

WaveRunner 6000 Series

6030 6050/6051 6100 6200

LEADING FEATURES

- 350 MHz, 500 MHz, 1 GHz and 2 GHz Bandwidths
- 5 GS/s on All Channels (10 GS/s on 2 Ch for 6100 and 6200)
- 1 Mpts on All Channels, Expandable to 12/24 Mpts
- Compact and Lightweight
- Easy User Interface
- New 2.5 mm Passive Probe
- Touch Screen Interface
- Vertical Controls for Each Channel
- USB 2.0 and 802.3xx LAN Ports
- Open Windows 2000

Excellent Performance, Great Price, Easy to Use

LeCroy's WaveRunner® 6000 Series is built to be the world's best everyday bench oscilloscope. It offers the best acquisition specifications, a user interface that makes it easy to perform the most common oscilloscope functions, industryleading long term support and a "feel" that makes the oscilloscope a pleasure to drive.

For the first time, LeCroy has combined the type of high performance front amplifier, ADC, memory and triggering used in more expensive oscilloscopes and designed it all into a very affordable package. The WaveRunner 6000 Series also introduces a user interface that makes viewing and measuring signals simple and fast.

With the WaveRunner 6000 Series, all viewing controls and basic oscilloscope functions are easily at hand using front panel knobs. You get fast views and can zoom in to see details on the bright touch panel color screen. Or use the simple and intuitive controls to call up exactly the measurements you need.

The WaveRunner 6000 Series includes an industry-leading signal acquisition path, which provides a 5 GS/s ADC on every

channel and 1 Mbyte of standard memory. No need to worry about the undersampling or aliasing caused by slower ADCs or shorter memories on other oscilloscopes.

The WaveRunner 6000 Series comes standard with the new PP007 500 MHz passive probe (one per channel). This 2.5 mm high impedance probe offers excellent characteristics for probing everyday signals. LeCroy also offers a wide range of optional single-ended and differential active probes, current probes, optical to electrical (O/E) converters and differential amplifiers.

Lastly, we decided to architect the oscilloscope so that users could add just the functionality they want. There are options for testing power devices, serial data mask testing, jitter and timing analysis, and for a wide variety of probes, O/E converters and other application specific devices.

Altogether, the WaveRunner 6000 Series sets a new industry standard for high performance at low price in everyday bench oscilloscopes.

Specifications

WaveRunner	WaveRunner	WaveRunner	WaveRunner	WaveRunner 6200
350 MHz	500 MHz	500 MHz	1 GHz	2 GHz
1	750	750	100	225
				225 ps 4
4	4		4	4
	1MΩ < 2		07 probe)	
		50 Ω: DC, 1MΩ: AC, DC, GND		
	50 Ω: 5 Vrm	s, 1 MΩ: 250 Vmax (Peak AC: ≤ 5	6 kHz + DC)	
	> 40 dB (@ < 100MHz (> 30 dB @ full bar	ndwidth)	
	-	±1 V @ 5–100 mV/div		
		±10 V @ 102 mV/div - 1V/div		
	1		/	
		±100 V @ 1.02V/div - 10V/div		
	±(1	.5% + 0.5% of offset value +1 n	۱V)	
		BNC or Probus®		
Inter	nal timebase common to all inp	ut channels; an external clock r	nay be applied at the auxiliary	input
	Real time: 200 ps/div—10	s/div, RIS mode: to 20 ps/div, Ro	Il mode: up to 1,000 s/div	
		1 1 1		
	CI	,	or	
		Equal to Clock Accuracy		
	- 0.V.d		1 1	
			, ,	
25 65/5	5 65/5	5 GS/s	5 GS/s	5 GS/s
N/A	N/A	N/A	10 GS/s	10 GS/s
		200 GS/s		
		125,000 waveforms/second		
		1 ns		
	• · · · · · · · · · · · · · · · · · · ·			
Max		h; 2 Ch / 1 Ch in 6051)		ie)
	8M / 16M		5,000	
	12M / 24M		10,000	
6030	6050	6051	6100	6200
	200 ps (5 GS/s)		100 ps	s (10 GS/s)
	Summed and	d continuous averaging to 1 mi		<u> </u>
	Fro	m 8.5 to 11 bits vertical resoluti	on	
	Envelope,		n sweeps	
		Linear or SinX/X		
		Normal, Auto, Single, Stop		
	Any input channel, Extern	· · · · · · · · · · · · · · · · · · ·	el unique to each source	
		DC		
			· ·	
	2 ns 1		ents	
6070	6070			
				6200
				2 div @ < 2 GHz; 1 div @ < 1.8 GHz
				750 MHz Max.
@ ≥ 10 mV	@ ≥ 10 mV	@ ≥ 10 mV	@ ≥ 10 mV	@ ≥ 10 mV
		\pm 4% full scale \pm 2 mV (typical)		
		EXT/10 ±4V; EXT ±400mV		
	Triggers when signal r	neets slope (positive or negativ	e) and level condition	
	Triggors on any input second			
	Triggers on any input source on Delay betwe	ly if a defined state or edge occ een sources is selectable by tim	e or events.	
	Delay betwe	ly if a defined state or edge occ een sources is selectable by tim ut for longer than selected time	e or events.	
	6030 350 MHz 1 ns 4 	6030 6050 350 MHz 500 MHz 1 ns 750 ps 4 4 1 MΩ2 < 2	6030 6050 6051 330 MHz 500 MHz 500 MHz 500 MHz 1 ns 750 ps 750 ps 750 ps 4 4 2 2 2 1 MQ < 20 PL (0 MQ 95 pf using PPO 50 Q: DMLz (- 30 G ef UI MZ - 100 MHz (- 20 G ef UI MZ - 100 MHz (- 20 G ef UI MZ - 100 MHz (- 20 G ef UI MZ - 100 MHz (- 20 G ef UI M) variable: 1 MU Vari	6030 6050 6051 6100 350 MHz 500 MHz 10 ML 10 ML 10 ML 1 ns 750 ps 750 ps 400 ps 4 4 2 4 1 ML2 < 20 pf (10 ML2 25 pF using PP007 probe)

SMART Triggers® with Exclusion Technology	
Glitch and Pulse Width	Triggers on positive or negative glitches with widths selectable from 600 ps to 20 s or on intermittent faults (subject to bandwidth limit of oscilloscope).
ignal or Pattern Interval	Triggers on intervals selectable between 2 ns and 20 s.
Timeout (State/Edge Qualified)	Triggers on any source if a given state (or transition edge) has occurred on another source.
	Delay between sources is 10 ns to 20 s, or 1 to 99,999,999 events.
xclusion Triggering	Trigger on intermittent faults by specifying the normal width or period.
Automatic Setup	
uto Setup	Automatically sets timebase, trigger, and sensitivity to display a wide range of repetitive signals
ertical Find Scale	Automatically sets the vertical sensitivity and offset for the selected channels to display a waveform with maximum dynamic range.
Probes	
robes	One PP007 per channel standard; Optional passive and active probes available
robe System; Probus	Automatically detects and supports a variety of compatible probes
cale Factors	Automatically or manually selected, depending on probe used
Color Waveform Display	
уре	Color 8.4" flat-panel TFT-LCD with high resolution touch screen
esolution	SVGA; 800x600 pixels
eal Time Clock	Dates, hours, minutes, seconds displayed with waveform. Accurate to ±50 ppm. SNTP support to synchronize to precision internet clocks.
umber of Traces	Display a maximum of 8 traces. Simultaneously display channel, zoom, memory, and math traces.
rid Styles /aveform Styles	Auto, Single, Dual, Quad, Octal, XY, Single + XY, Dual + XY Sample dots joined or dots only
	Sumple dots Joneti of dots only
nalog Persistence Display	
nalog and Color-Graded Persistence	Variable saturation levels; stores each trace's persistence data in memory
ersistence Selections	Select analog, color, or three-dimensional
race Selection ersistence	Activate persistence on all or any combination of traces Aging Time Select from 500 ms to infinity
weeps Displayed	All accumulated, or all accumulated with last trace highlighted
oom Expansion Traces	Diamlass cun da A. Zanam Madah duna
PU	Display up to 4 Zoom/Math traces.
rocessor	Intel Celeron 1.7 GHz or better
rocessing Memory	256 MB on Std, S & M option; 512 MB with L and VL option
perating System	Microsoft Windows 2000 Professional
nternal Waveform Memory	
nternal waveform memory	M1, M2, M3, M4 Internal Waveform Memory (store full-length waveform with 16 bits/data point) or
	store to any number of files limited only by data storage media
Setup Storage	
ront Panel and Instrument Status	Store to the internal hard drive, over the network, or to a USB-connected peripheral device
nterface	
emote Control	Via Windows Automation, or via LeCroy Remote Command Set
iPIB Port (Optional)	Supports IEEE – 488.2
thernet Port	10/100Base-T Ethernet interface (RJ-45 connector)
SB Ports	5 USB 2.0 ports (one on front of instrument) supports Windows-compatible devices
xternal Monitor Port	Standard 15-pin D-Type SVGA-compatible DB-15; connect a second monitor to use dual-monitor display mode
arallel Port	Standard DB-25
erial Port	DB-9 RS232 port (not for remote oscilloscope control)
Auxiliary Input	
ignal Types	Selected from External Trigger or External Clock input on front panel
oupling	50 Ω: DC, 1MΩ: AC, DC, GND
laximum Input Voltage	50 Ω: 5 Vrms, 1MΩ: 250 Vmax (Peak AC: ≤ 10 kHz + DC)
ieneral	
uto Calibration	Ensures specified DC and timing accuracy is maintained for 1-year minimum
robe Calibrator	Output available on front panel provides a variety of DC and square wave signals for probe compensation adjustment
ower	100–240 Vrms at 50/60 Hz; 115 Vrms (±10%) at 400 Hz Automatic AC Voltage Selection
	Installation Category: 300V CAT II; Max. Power Consumption: 400 VA/400 W; 350 VA/350 W for WaveRunner 6051
nvironmental	
emperature: Operating	+5 °C to 40 °C
emperature: Nonoperating	−20 °C to +60 °C
umidity: Operating	5% to 80% RH (noncondensing) up to 30 °C; upper limit derates linearly to 45% RH (noncondensing) at 40 °C
umidity: Nonoperating	5% to 95% RH (noncondensing) as tested per MIL-PRF-28800F
ltitude: Operating	3,048 m (10,000 ft.) max at ≤ 25 °C
ltitude: Nonoperating	12,190m (40,000 ft.)
Physical	
Dimensions (HWD)	211 mm x 355 mm x 363 mm (excluding handle and feet) 8.3" x 13.8" x 14.3"
let Weight	10 kg (22 lbs.), excluding printer
hipping Weight	Less than 13.6 kg. (30 lbs.)
Certifications	
	CE Approved, UL and cUL listed; Conforms to EN 61326-1, EN 61010-1, UL 61010B-1, and CSA C22.2 No. 1010.1
Varranty and Service	
	3-year warranty; calibration recommended annually.
	b jear Manantij eanbradon recommended annaanji

3-year warranty; calibration recommended annually. Optional service programs include extended warranty, upgrades, calibration, and customization services

₩ waveRunner[®] Ordering Information

WaveRunner 2- and 4-Channel Digital Oscilloscopes			
2 GHz, 5 GS/s, 1 Mpts/4 Ch; 10 GS/s, 2 Mpts/2 Ch, 4 Ch Color		WaveRunner 620)0
1 GHz, 5 GS/s, 1 Mpts/4 Ch; 10 GS/s, 2 Mpts/2 Ch, 4 Ch Color		WaveRunner 610	
500 MHz, 5 GS/s, 1 Mpts/4 Ch; 5 GS/s, 2 Mpts/2 Ch, 4 Ch Color		WaveRunner 605	<i>5</i> 0
500 MHz, 5 GS/s, 1 Mpts/2 Ch; 5 GS/s, 2 Mpts/1 Ch, 2 Ch Color		WaveRunner 605	51
350 MHz, 5 GS/s, 1 Mpts/4 Ch; 5 GS/s, 2 Mpts/2 Ch, 4 Ch Color		WaveRunner 603	30
Included with Standard Configuration			
10:1 10 MΩ, 500 MHz BW Passive Probes – Qty 4 (2 with WaveRunner 6051)		PP007	
Printed Getting Started Manual		WR6-GS-E	
CD-ROM containing Operators Manual, Remote Command Manual, Utility Softwa	are, and Recovery Software		
Optical 3-button Wheel Mouse – USB			
Standard Ports; 10/100Base-T Ethernet, USB (5), Parallel, RS-232, SVGA Video out, A	Audio in/out		
Internal Hard Drive			
Protective Front Cover			
Standard Commercial Calibration and Performance Certificate			
3-Year Warranty			
Memory Options	6200 6100 6050	6030 6051	
2 Mpts/Ch, 4 Mpts maximum using 2 Channel (1 Channel for 6051)	S	S2	
4 Mpts/Ch, 8 Mpts maximum using 2 Channel (1 Channel for 6051)	M	M2	
8 Mpts/Ch, 16 Mpts maximum using 2 Channel (1 Channel for 6051)	L	L2	
12 Mpts/Ch, 24 Mpts maximum using 2 Channel (1 Channel for 6051)		VL	VL.
Hardware Options			
Removable HDD		WR6-RHD	_
CD-RW Upgrade		WR6-CDRW	_
		Who CDAW	
WaveShape Analysis Packages			
CAN Bus Tigger and Decode Test Package		CANbus TD	
Jitter and Timing Analysis		WR6-JTA2	
PowerMeasure Analysis		WR6-PMA2	
Disk Drive Measurement Package		WR6-DDM2	
Digital Filter Package Serial Data Mask Package		WR6-DFP2 WR6-SDM	
Ethernet Test Package (WaveRunner 6100 and 6200 only1)		WR6-ENET	
USB 2.0 Compliance Software (WaveRunner 6200 only2)		WR6-USB2	
Advanced Math Package		WR6-XMATH	
Intermediate Math Package		WR6-XWAV	
Master Analysis Package (XMATH + XDEV + JTA2)		WR6-XMAP	
Value Analysis Package (XWAV + JTA2)		WR6-XVAP	
Developer's Customization Kit		WR6-XDEV	
Norton Antivirus		WR6-AV	
Selected Accessories			
Passive Probe, 500 MHz		PP007-1	
2.5 GHz Active Voltage Probe		HFP2500	
1.5 GHz Active Voltage Probe		HFP1500	
1 GHz Active Voltage Probe		HFP1000	
500 MHz Differential Probe		AP033	
1 GHz Differential Probe		AP034	
500A, 2 MHz Current Probe		CP500	
150A, 10 MHz Current Probe		CP150	
15A, 50 MHz Current Probe		CP015	
30A, 50 MHz Current Probe		AP015	
3 GHz Differential Probe and Adjustable Tips		D300 & D300AT	·
100 MHz Differential Amp		DA1855A	
Floppy Drive (External USB)		WR6-FLPY	
Rackmount, 6U Height		WR6-RACK	
		WR6-KBD	
Mini Keyboard		WR6-SOFT	
Soft Carrying Case		WR6-HARD WR6-POUCH	
Soft Carrying Case Hard Transit Case			
Soft Carrying Case Hard Transit Case Accessory Pouch			
Soft Carrying Case Hard Transit Case Accessory Pouch GPIB		WR6-GPIB	
Soft Carrying Case Hard Transit Case Accessory Pouch GPIB 256 MB USB Memory Key		WR6-GPIB MEM-USB	
Soft Carrying Case Hard Transit Case Accessory Pouch GPIB 256 MB USB Memory Key Scope Cart – Basic		WR6-GPIB MEM-USB OC1021	
Soft Carrying Case Hard Transit Case Accessory Pouch GPIB 256 MB USB Memory Key		WR6-GPIB MEM-USB	

¹ Package may be used with lower BW oscilloscope models, however, some measurements will not operate with signals at all data rates.

² Can be used with lower bandwidth models, however only USB 1.1 test functions will be available. WaveRunner 6200 required for USB 2.0 capability.

© 2004 by LeCroy Corporation. All rights reserved.

Sales and Service Throughout the World

Corporate Headquarters

700 Chestnut Ridge Road Chestnut Ridge, NY 10977 USA www.lecroy.com

LeCroy Sales Offices:

China: Beijing Phone (86) 10 8526 1618 Fax (86) 10 8526 1619

France: Les Ulis Phone (33) 1 6918 8320 Fax (33) 1 6907 4042

Germany: Heidelberg Phone (49) 6221 827 00 Fax (49) 6221 834 655

Hong Kong Phone (852) 2834 5630 Fax (852) 2834 9893

Italy: Venice Phone (39) 041 599 7011 Fax (39) 041 456 9542

Japan: Osaka Phone (81) 6 6396 0961 Fax (81) 6 6396 0962

Japan: Tokyo Phone (81) 3 3376 9400 Fax (81) 3 3376 9587

Korea: Seoul Phone (82) 2 3452 0400 Fax (82) 2 3452 0490

Singapore Phone (65) 6442 4880 Fax (65) 6442 7811

Sweden: Stockholm Phone (46) 8 580 143 45 Fax (46) 8 580 143 45

Switzerland: Geneva Phone (41) 22 719 2228 (North) Phone (41) 22 719 2175 (South) Fax (41) 22 719 2230

U.K.: Abingdon Phone (44) 1 235 536 973 Fax (44) 1 235 528 796

U.S.A.: Chestnut Ridge Phone (1) 845 578 6020 Fax (1) 845 578 5985

