Model 2001 Specifications

The following pages contain the complete specifications for the 2001. Every effort has been made to make these specifications complete by characterizing its performance under the variety of conditions often encountered in production, engineering and research.

The 2001 provides 5-minute, 1-hour, 24-hour, 90-day, 1-year, and 2-year specifications, with full specifications for the 90-day, 1-year and 2-year specifications. This allows the user to utilize 90-day, 1-year, or 2-year recommended calibration intervals, depending upon the level of accuracy desired. As a general rule, the 2001's 2-year performance exceeds a $5^{1}/_{2}$ -digit DMM's 90-day, 180-day or 1-year specifications. $6^{1}/_{2}$ - or $7^{1}/_{2}$ -digit performance is assured using 90-day or 1-year specifications.

ABSOLUTE ACCURACY

To minimize confusion, all 90-day, 1-year and 2-year 2001 specifications are absolute accuracy, traceable to NIST based on factory calibration. Higher accuracies are possible, based on your calibration sources. For example, calibrating with a 10V primary standard rather than a 20V calibrator will reduce calibration uncertainty, and can thereby improve total 2001 accuracy for measurements up to 50% of range. Refer to the 2001 calibration procedure for details.

TYPICAL ACCURACIES

Accuracy can be specified as typical or warranted. All specifications shown are warranted unless specifically noted. Almost 99% of the 2001's specifications are warranted specifications. In some cases it is not possible to obtain sources to maintain traceability on the performance of every unit in production on some measurements (e.g., high-voltage, high-frequency signal sources with sufficient accuracy do not exist). Since these values cannot be verified in production, the values are listed as typical.

2001 SPECIFIED CALIBRATION INTERVALS

MEASUREMENT FUNCTION	24 HOUR ¹	90 DAY ²	1 YEAR ²	2 YEAR ²
DC Volts	•	• 3	•	•
DC Volts Peak Spikes		• 3	•	•
AC Volts rms		• 3	•	•
AC Volts Peak		• 3	•	•
AC Volts Average		• 3	•	•
AC Volts Crest Factor		• 3	•	•
Ohms	•	•	•	•
DC Current	•	•	•	•
DC In-Circuit Current		•	•	•
AC Current		• 3	•	•
Frequency		•	•	•
Temperature (Thermocouple)		•	•	•
Temperature (RTD)		•	•	•

¹ For TCAL ±1°C.

² For Tcal ±5°C.

³ For ±2°C of last AC self cal.

DCV INPUT CHARACTERISTICS AND ACCURACY

RANGE	FULL SCALE	RESO- LUTION	DEFAULT RESO- LUTION	INPUT RESISTANCE	± 5 Minutes ¹²	AC ppm of read 24 Hours ²		of range) 1 Year³	2 Years³	TEMPERATURE COEFFICIENT ±(ppm of reading + ppm of range)/°C Outside Tcal ±5°C
200 mV 4	±210.00000	10 nV	100 nV	$>10~\mathrm{G}\Omega$	3 + 3	10 + 6	25 + 6	37 + 6	50 + 6	3.3 +1.5
2 V	±2.1000000	100 nV	1 μV	$>10~\mathrm{G}\Omega$	2 + 1.5	7 + 2	18 + 2	25 + 2	32 + 2	2.6 + 0.15
20 V	±21.000000	1 μV	10 μV	$>10~\mathrm{G}\Omega$	2 + 1.5	7 + 4	18 + 4	24 + 4	32 + 4	2.6 + 0.7
200 V	±210.00000	10 μV	100 μV	10 MΩ ±1%	2 + 1.5	13 + 3	27 + 3	38 + 3	52 + 3	4.3 +1
1000 V	±1100.0000	100 μV	1 mV	$10~M\Omega~\pm1\%$	10 + 1.5	17 + 6	31 + 6	41 + 6	55 + 6	4.1 +1

NOISE REJECTION (dB)

(Number of

Power Line

Cycles)

NPLC = 10

 $NPLC \ge 1$

AC and DC CMRR⁶

Line Sync Internal

Trigger⁸

120

120

On⁷

140

140

DC VOLTAGE UNCERTAINTY = ±[(ppm of reading) × (measured value) + (ppm of range) × (range used)] / 1,000,000.

% ACCURACY = (ppm accuracy) /10,000.

1PPM OF RANGE = 2 counts for ranges up to 200V, 1 count on 1000V range at 61/2 digits.

SPEED AND	O ACCURACY	7 ⁵ 90 Days		
		ACCU	JRACY	
	±(ppm of read	ing+ppm of rar	nge+ppm of ran	ige rms noise ¹⁰)
RANGE	1PLC DFILT On, 10 Readings	1PLC DFILT Off	0.1PLC DFILT Off	0.01PLC ¹¹ DFILT Off
200 mV 4	25+6+0	25+6+0.6	25+30+10	100+200+15
2 V	18+2+0	18+2+0.2	18+25+1	130+200+3
20 V	18+4+0	18+4+0.3	18+20+0.5	130+200+3
200 V	27+3+0	27+5+0.3	27+20+0.8	130+200+3
1000 V	31+6+0	31+6+0.1	31+21+0.5	90+200+2

NPLC < 1 60 50 30 20 0

Effective noise is reduced by a factor of 10 for every 20dB of noise rejection (140dB reduces effective noise by 10,000,000:1).

Line Sync On⁷

25-Reading

DFILT On

90

90

AC NMRR

Line Sync

On⁷

DFILT Off

80

80

Internal

Trigger8

DFILT Off

60

60

CMRR is rejection of undesirable AC or DC signal between LO and earth. NMRR is rejection of undesirable AC signal between HI and LO.

DCV READING RATES^{9,10}

PLC = power line cycle; DFILT = digital filter

200mV, 2V, 200V Ranges

												READ	DINGS/S	ECOND	WITH
	MEASUREMENT	1	DEFAULT	READIN	GS/SECO	ND TO	MEMORY	READIN	GS/SECO	OND TO	IEEE-488	TIME	STAME	TO IEI	E-488
NPLC	APERTURE	BITS	DIGITS	Auto 2	Zero Off	Auto Z	ero On	Auto 2	Zero Off	Auto 2	Zero On	Auto 2	Zero Of	Auto Z	ero On
10	167 ms (200 ms)	28	71/2	6	(5.1)	2	(1.7)	6		2	(1.6)	6	(4.1)	2	(1.6)
2	33.4 ms (40 ms)	26	71/2	30	(25)	9	(7.6)	28	(23)	9	(7.3)	27	(22)	8	(7.2)
1	16.7 ms (20 ms)	25	$6^{1/2}$	58	(48)	44	(34)	54	(45)	41	(32)	49	(41)	37	(30)
0.2	3.34 ms (4 ms)	22	$6\frac{1}{2}$	214	(186)	127	(112)	183	(162)	104	(101)	140	(126)	88	(85)
0.1	1.67 ms (2 ms)	21	$5\frac{1}{2}$	272	(272)	150	(148)	228	(225)	129	(123)	156	(153)	100	(96)
0.02	334 μs (400 μs)	19	$5^{1/2}$	284	(287)	156	(155)	230	(230)	136	(134)	158	(156)	104	(103)
0.01	167 μs (167 μs)	16	41/2	417	(417)	157	(157)	317	(317)	137	(134)	198	(198)	105	(103)
0.01^{11}	167 μs (167 μs)	16	41/2	2000	(2000)			2000	(2000)						
20V, 100	0V Ranges														
10	167 ms (200 ms)	28	71/2	6	(5.1)	2	(1.7)	6		2	(1.6)	6		2	(1.6)
2	33.4 ms (40 ms)	26	71/2	30	(25)	9	(8.2)	28	(23)	9	(7.8)	27	(22)	9	(7.7)
1	16.7 ms (20 ms)	25	$6^{1/2}$	57	(48)	42	(38)	54	(45)	43	(35)	48	(41)	39	(32)
0.2	3.34 ms (4 ms)	22	61/2	201	(186)	102	(113)	173	(162)	102	(99)	129	(127)	84	(83)
0.1	1.67 ms (2 ms)	21	$5\frac{1}{2}$	201	(201)	126	(116)	175	(173)	105	(105)	129	(128)	86	(86)
0.02	334 μs (400 μs)	19	$5^{1/2}$	227	(227)	129	(129)	178	(178)	114	(114)	138	(138)	90	(90)
0.01	167 µs (167 µs)	16	41/2	422	(422)	130	(130)	333	(333)	117	(117)	199	(199)	95	(95)
0.01^{11}	167 us (167 us)	16	41/2	2000	(2000)			2000	(2000)						

SETTLING CHARACTERISTICS: <500µs to 10ppm of step size. Reading settling times are affected by source impedance and cable dielectric absorption characteristics. Add 10ppm of range for first reading after range change.

ZERO STABILITY: Typical variation in zero reading, 1 hour, Tref ±1°C, 6½-digit default resolution, 10-reading digital filter:

ZERO STABILITY

Range 1 Power Line Cycle Integration 10 Power Line Cycle Integration

 $\begin{array}{cccc} 2V-1000V & \pm 3 \ counts & \pm 2 \ counts \\ 200 \ mV & \pm 5 \ counts & \pm 3 \ counts \end{array}$

ISOLATED POLARITY REVERSAL ERROR: This is the portion of the instrument error that is seen when high and low are reversed when driven by an isolated source. This is not an additional error—it is included in the overall instrument accuracy spec. Reversal Error: <2 counts at 10V input at 6½ digits, 10 power line cycles, 10-reading digital filter.

INPUT BIAS CURRENT: <100pA at 25°C.

LINEARITY: <1ppm of range typical, <2ppm maximum.

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

DC VOLTS NOTES

- Specifications are for 1 power line cycle, Auto Zero on, 10-reading digital filter, except as noted.
- For Tcal.±1°C, following 55-minute warm-up. Tcal. is ambient temperature at calibration, which is 23°C from factory.
- 3. For $T_{CAL} \pm 5^{\circ}C$, following 55-minute warm-up. Specifications include factory traceability to US NIST.
- 4. When properly zeroed using REL function.
- 5. For TCAL ±5°C, 90-day accuracy. 1-year or 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 6. Applies for $1k\Omega$ imbalance in the LO lead. For 400Hz operation, subtract 10dB.
- 7. For noise synchronous to the line frequency.

- 8. For line frequency ±0.1%.
- See Operating Speed section for additional detail. For DELAY=0, internal trigger, digital
 filter off, display off (or display in "hold" mode). Aperture is reciprocal of line frequency.
 These rates are for 60Hz and (50Hz).
- 10. Typical values
- 11. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 12. DCV Transfer Stability typical applications are standard cell comparisons and relative accuracy measurements. Specs apply for 10 power line cycles, 20-reading digital filter, autozero on with type synchronous, fixed range following 2-hour warm-up at full scale to 10% of full scale, at There ± 1°C (There is the initial ambient temperature). Specifications on the 1000V range are for measurements within 5% of the initial measurement value and following measurement settling.

 HW 4/28/03

DCV PEAK SPIKES MEASUREMENT

REPETITIVE SPIKE	ES ACCURA	CY ¹ 90 Da	ays, ±2°C fro	m last AC sel	lf-cal ±(%	of reading+9	% of range)			
RANGE	0-1kHz4	1kHz- 10kHz	10kHz- 30kHz	30kHz- 50kHz	50kHz- 100kHz	100kHz- 300kHz	300kHz- 500kHz	500kHz- 750kHz	750kHz- 1MHz	TEMPERATURE COEFFICIENT ±(% of reading+% of range)/°C Outside Tcal ±2°C
200 mV	0.08+0.7	0.08+0.7	0.1 + 0.7	0.15+0.7	0.25+0.7	1.0+0.7	2.5 + 0.7	5.5 + 0.7	9+0.7	0.002+0.03
2 V	0.08+0.3	0.08+0.3	0.1 + 0.3	0.15+0.3	0.25+0.3	1.0+0.3	2.5+0.3	5.5+0.3	9+0.3	0.002+0.03
20 V	0.09+0.7	0.1 + 0.7	0.12+0.7	0.17+0.7	0.25+0.7	1.0+0.7	2.5+0.7	5.5+0.7	9+0.7	0.004+0.03
200 V ³	0.09+0.3	0.1 + 0.3	0.12+0.3	0.17+0.3	0.25+0.3	$1.0+0.3^{2}$	$2.5+0.3^{2}$	$5.5+0.3^{2}$	$9+0.3^{2}$	0.004+0.03
1000 V ³	0.1 + 0.6	0.13+0.6	0.16+0.6	$0.25+0.6^{2}$	$0.5 + 0.6^{2}$					0.01 + 0.02
Max. % of Range	±125%	±125%	±125%	±125%	±125%	±125%	±125%	±100%	±75%	
				-0-						
REPETITIVE SPIKE	ES ACCURA	CY ¹ 1 or 2	2 Years, TCAL	±5°C ±(% of reading-	+% of range)				TEMPERATURE COFFEIGURNT
REPETITIVE SPIKE	ES ACCURA 0−1kHz⁴	CY¹ 1 or : 1kHz- 10kHz	2 Years, Tcal 10kHz- 30kHz	±5°C ±(' 30kHz- 50kHz	% of reading- 50kHz– 100kHz	+% of range) 100kHz– 300kHz	300kHz- 500kHz	500kHz- 750kHz	750kHz- 1MHz	TEMPERATURE COEFFICIENT ±(% of reading+% of range)/°C Outside Tcal ±5°C
		1kHz-	10kHz-	30kHz-	50kHz-	100kHz-	300kHz-			±(% of reading+% of range)/°C
RANGE	0-1kHz ⁴	1kHz- 10kHz	10kHz- 30kHz	30kHz- 50kHz	50kHz- 100kHz	100kHz- 300kHz	300kHz- 500kHz	750kHz	1MHz	±(% of reading+% of range)/°C Outside TCAL ±5°C
RANGE 200 mV	0-1kHz ⁴ 0.08+0.7	1kHz- 10kHz 0.09+0.7	10kHz- 30kHz 0.1 +0.7	30kHz- 50kHz 0.15+0.7	50kHz- 100kHz 0.25+0.7	100kHz- 300kHz 1.0+0.7	300kHz- 500kHz 2.5+0.7	750kHz 5.5+0.7	1MHz 9+0.7	±(% of reading+% of range)/°C Outside Tcal ±5°C 0.002+0.03
RANGE 200 mV 2 V	0-1kHz ⁴ 0.08+0.7 0.08+0.3	1kHz- 10kHz 0.09+0.7 0.09+0.3	10kHz- 30kHz 0.1 +0.7 0.1 +0.3	30kHz- 50kHz 0.15+0.7 0.15+0.3	50kHz- 100kHz 0.25+0.7 0.25+0.3	100kHz- 300kHz 1.0+0.7 1.0+0.3	300kHz- 500kHz 2.5+0.7 2.5+0.3	750kHz 5.5+0.7 5.5+0.3	1MHz 9+0.7 9+0.3	±(% of reading+% of range)/°C Outside T _{CAL} ±5°C 0.002+0.03 0.002+0.03
RANGE 200 mV 2 V 20 V	0-1kHz ⁴ 0.08+0.7 0.08+0.3 0.1 +0.7	1kHz- 10kHz 0.09+0.7 0.09+0.3 0.11+0.7	10kHz- 30kHz 0.1 +0.7 0.1 +0.3 0.14+0.7	30kHz- 50kHz 0.15+0.7 0.15+0.3 0.19+0.7	50kHz- 100kHz 0.25+0.7 0.25+0.3 0.25+0.7	100kHz- 300kHz 1.0+0.7 1.0+0.3 1.0+0.7	300kHz- 500kHz 2.5+0.7 2.5+0.3 2.5+0.7	750kHz 5.5+0.7 5.5+0.3 5.5+0.7	1MHz 9+0.7 9+0.3 9+0.7	±(% of reading+% of range)/°C Outside T _{CAL} ±5°C 0.002+0.03 0.002+0.03 0.004+0.03

DEFAULT MEASUREMENT RESOLUTION: 31/2 digits.

MAXIMUM INPUT: ±1100V peak value, 2×10⁷V • Hz (for inputs above 20V).

NON-REPETITIVE SPIKES: 10% of range per µs typical slew rate.

SPIKE WIDTH: Specifications apply for spikes $\ge 1 \mu s$.

 $\mbox{{\bf RANGE CONTROL:}}$ In Multiple Display mode, voltage range is the same as DCV range.

SPIKES MEASUREMENT WINDOW: Default is 100ms per reading (settable from 0.1 to 9.9s in Primary Display mode).

INPUT CHARACTERISTICS: Same as ACV input characteristics.

SPIKES DISPLAY: Access as multiple display on DC Volts. First option presents positive peak spikes and highest spike since reset. Second option presents negative spikes and lowest spike. Highest and lowest spike can be reset by pressing DCV function button. Third option displays the maximum and minimum levels of the input signal. Spikes displays are also available through CONFIG-ACV-ACTYPE as primary displays.

DCV PEAK SPIKES NOTES

- 1. Specifications apply for 10-reading digital filter. If no filter is used, add 0.25% of range typical uncertainty.
- 2. Typical values.
- 3. Add 0.001% of reading \times (V_{IN}/100V)² additional uncertainty for inputs above 100V.
- 4. Specifications assume AC+DC coupling for frequencies below 200Hz. Below 20Hz add 0.1% of reading additional uncertainty.

AC VOLTS

AC magnitude: RMS or Average. Peak and Crest Factor measurements also available.

ACV INPUT CHARACTERISTICS

RMS RANGE	PEAK INPUT	FULL SCALE RMS	RESOLUTION	DEFAULT RESOLUTION	INPUT IMPEDANCE	TEMPERATURE COEFFICIENT ² ±(% of reading + % of range) / °C Outside Tcal ±5°C
200 mV	1 V	210.0000	100 nV	1 μV	$1M\Omega$ ±2% with <140pF	0.004 + 0.001
2 V	8V	2.100000	1 μV	10 μV	$1M\Omega$ ±2% with <140pF	0.004 + 0.001
20 V	100 V	21.00000	10 μV	100 μV	$1M\Omega \pm 2\%$ with < 140 pF	0.006 + 0.001
200 V	800 V	210.0000	100 μV	1 mV	$1M\Omega$ ±2% with <140pF	0.006 + 0.001
750 V	1100 V	775.000	1 mV	10 mV	$1M\Omega$ ±2% with <140pF	0.012 + 0.001

AC VOLTAGE UNCERTAINTY = \pm [(% of reading) × (measured value) + (% of range) × (range used)] / 100.

PPM ACCURACY = (% accuracy) \times 10,000.

0.015% OF RANGE = 30 counts for ranges up to 200V and 113 counts on 750V range at $5\frac{1}{2}$ digits.

LOW FRE	QUENCY I	MODE RMS	¹ 90 Days,	±2°C from las	t AC self-cal, f	or 1% to 100%	6 of range ³	±(% of rea	nding + % of r	ange)	
RANGE	1-10Hz ⁵	10-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz	50-100kHz	100-200kHz	0.2–1MHz	1–2MHz
200 mV	0.09+0.015	0.04+0.015	0.03+0.015	0.03+0.015	0.03+0.015	0.035+0.015	0.05+0.015	0.3+0.015	0.75+0.025	2+0.1	5+0.2
2 V	0.09+0.015	0.04+0.015	0.03 + 0.015	0.03+0.015	0.03+0.015	0.035 + 0.015	0.05+0.015	0.3+0.015	0.75 + 0.025	2+0.1	5+0.2
20 V	0.1 + 0.015	0.05+0.015	0.04+0.015	0.04 + 0.015	0.06+0.015	0.08 + 0.015	0.1 + 0.015	0.3+0.015	0.75 + 0.025	4+0.2	$7+0.2^{5}$
200 V ⁴	0.1 + 0.015	0.05 + 0.015	0.04+0.015	0.04+0.015	0.06+0.015	0.08 + 0.015	0.1 + 0.015	0.3+0.015	$0.75 + 0.025^{5}$	$4+0.2^{5}$	
750 V ⁴	0.13 + 0.015	0.09 + 0.015	0.08 + 0.015	0.08 + 0.015	0.09+0.015	0.12 + 0.015	$0.15 + 0.015^{5}$	$0.5+0.015^{5}$			
LOW FRE	QUENCY I	MODE RMS	1 1 or 2 Ye	ears, TCAL ±5°C	for 1% to 100	0% of range ³	±(% of re	ading + % of	range)		
LOW FREE	QUENCY / 1–10Hz ⁵	MODE RMS ¹ 10–50Hz	1 or 2 Yo 50–100Hz	ears, T _{CAL} ±5°C 0.1–2kHz	for 1% to 100 2–10kHz	0% of range ³ 10–30kHz	±(% of re 30–50kHz		range) 100–200kHz	0.2-1MHz	1–2MHz
				•		0			0	0.2-1MHz 2+0.1	1–2MHz 5+0.2
RANGE	1-10Hz ⁵	10-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz	50–100kHz	100-200kHz		
RANGE 200 mV	1-10Hz ⁵ 0.11+0.015	10-50Hz 0.06+0.015	50-100Hz 0.05+0.015	0.1-2kHz 0.05+0.015	2-10kHz 0.05 +0.015	10-30kHz 0.05+0.015	30-50kHz 0.06+0.015	50-100kHz 0.3+0.015	100-200kHz 0.75+0.025	2+0.1	5+0.2
RANGE 200 mV 2 V	1-10Hz ⁵ 0.11+0.015 0.11+0.015	10-50Hz 0.06+0.015 0.06+0.015	50-100Hz 0.05+0.015 0.05+0.015	0.1-2kHz 0.05+0.015 0.05+0.015	2-10kHz 0.05 +0.015 0.05 +0.015	10-30kHz 0.05+0.015 0.05+0.015	30-50kHz 0.06+0.015 0.06+0.015	50-100kHz 0.3+0.015 0.3+0.015	100-200kHz 0.75+0.025 0.75+0.025	2+0.1 2+0.1	5+0.2 5+0.2

	MODE BY	IC1	. 202 1	1.1.40.22	.16. 40/ :	1000/ 5 3	. /0/ 1	P	. (
	MODE RM		•			100% of range ³		reading + %		0.0.41411	4 01411
RANGE		20-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz		100-200kHz		
200 mV 2 V		0.25+0.015 0.25+0.015	0.07+0.015 0.07+0.015	0.03+0.015 0.03+0.015	0.03+0.015 0.03+0.015		0.05+0.015 0.05+0.015	0.3+0.015 0.3+0.015	0.75+0.025 0.75+0.025	2+0.1 2+0.1	5+0.2 5+0.2
20 V		0.25+0.015	0.07+0.015	0.04+0.015	0.06+0.015		0.1 +0.015	0.3+0.015	0.75+0.025	4+0.2	7+0.2
200 V ⁴ 750 V ⁴		0.25+0.015	0.07+0.015	0.04+0.015	0.06+0.015		0.1 +0.015	0.3+0.015	0.75+0.0255	$4+0.2^{5}$	
	MODE RM	0.25+0.015 \S ¹ 1 o	0.1 +0.015 or 2 Years, Tca	0.08+0.015 ι ±5°C for 1%	0.09+0.015 to 100% of		0.15+0.015 ⁵ % of reading +	0.5+0.015 ⁵ % of range)			
RANGE		20-50Hz	50-100Hz	0.1-2kHz	2-10kHz	10-30kHz	30-50kHz		100-200kHz	0.2-1MHz	1–2MI
$200\mathrm{mV}$		0.25+0.015	0.08+0.015	0.05+0.015	0.05 +0.015	5 0.05+0.015	0.06+0.015	0.3+0.015	0.75+0.025	2+0.1	5+0.2
2 V		0.25+0.015	0.08+0.015	0.05+0.015	0.05 +0.015		0.06+0.015	0.3+0.015	0.75+0.025	2+0.1	5+0.2
20 V 200 V ⁴		0.25+0.015 0.25+0.015	0.08+0.015 0.08+0.015	0.06+0.015 0.06+0.015	0.085+0.015 0.085+0.015		0.13+0.015 0.13+0.015	0.3+0.015 0.3+0.015	0.75+0.025 0.75+0.025 ⁵	$4+0.2 \\ 4+0.2^{5}$	7+0.
750 V ⁴		0.27+0.015	0.11+0.015	0.1 +0.015	0.13 +0.013		0.22+0.0155	0.5+0.0155		2.0	
IB ACCUI	RACY RMS	±dB, 9	0 Days, 1 or	2 Years, TCAL	±5°C, Refere	nce=1V, Autoran	ging, Low Fred	uency Mode,	AC+DC Coup	oling	
	INPUT		1–100Hz	0.1-3	80kHz	30-100kHz	100-200k	Hz 0	.2–1MHz	1–2MF	lz
-54 to-40		to 10 mV)	0.230		225	0.236	0.355				
-40 to-34 -34 to 6	•	to 20 mV) to 2 V)	0.036 0.023		031 018	0.041 0.028	0.088 0.066		0.265	0.630	
6 to 26	dB (2 V	to 20 V)	0.024		024	0.028	0.066		0.538	0.820	
	dB (20 V		0.024		024	0.028	0.066^{5}		0.538^{5}		
40 10 37	.8 dB (200 V	to 775 V)	0.018	0.0	021	0.049^{5}					
CV REAL	DING RAT	ES ^{5,6}									
	MEASUREM	ENT	DEFAULT	READINGS/SE	COND TO M	IEMORY READ	DINGS/SECOND	TO IEEE-48		GS/SECOND AMP TO IE	
NPLC	APERTUR	E BITS			ff Auto Zer		o Zero Off A			Off Auto Z	
10	167 ms (200	ms) 28	$6^{1/2}$	6 (5.1)	2 (2	2 (1.6)	2		(1.5)
2 1	33.4 ms (40		5½ 5½	30 (24)			28 (23)	9 (7.6) 36 (33)		2) 9	(7.5)
0.1	16.7 ms (20 1.67 ms (2	ms) 21	5½ 5½	57 (48) 136 (136)			53 (45) 22 (122)	64 (64)		(1) 34 (8) 56	(30) (56)
0.01	167 μs (167	μs) 16	41/2	140 (140)		(71) 12	27 (127)	66 (66)		9) 58	(58)
0.018	167 μs (167		41/2	2000 (2000)			00 (2000)				
AC COUP		C only couplin Hz 10–20Hz	O	U	O	ACV CREST CREST FACTOR			MENI''		
Normal Mod		112 10-20112	20-30112	JU-100112 10		CREST FACTOR					
(rms, avera	· ·	-	0.41	0.07	0.015	CREST FACTOR			certainty + A	.C normal n	node rr
ow Frequen (rms)	cy Mode 0.	1 0.01		0		uncertaint	y.				
		1 0.01	0	U	0	MEASI IDEMENT	•	nlue rme m	assurament ti	mo	
	iency mode be	low 200Hz, spe				MEASUREMEN' INPUT CHARA	T TIME: 100ms	-		me.	
only.	v	low 200Hz, spe	cifications app	oly for sine wa	ve inputs	INPUT CHARA CREST FACTO	T TIME: 100ms CTERISTICS: S R FREQUENCY	ame as ACV RANGE: 20F	input. Iz – 1MHz.		
only. AC+DC CO addition	OUPLING: 1 al uncertainty	low 200Hz, spe For DC>20% of multiplied by	ecifications app	oly for sine wa	ve inputs following	INPUT CHARA	T TIME: 100ms CTERISTICS: S R FREQUENCY	ame as ACV RANGE: 20F	input. Iz – 1MHz.		
only. AC+DC CO additions and aver	OUPLING: 1	low 200Hz, spe For DC>20% of multiplied by	ecifications app FAC rms volta the ratio (DC/	oly for sine wa	ve inputs following	INPUT CHARA CREST FACTO	T TIME: 100ms CTERISTICS: S R FREQUENCY	ame as ACV RANGE: 20F	input. Iz – 1MHz.		
only. AC+DC CO additiona and aver	OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V	low 200Hz, spe For DC>20% of multiplied by nents. % of Read 0.05	ecifications app FAC rms volta the ratio (DC/	oly for sine wa age, apply the AC rms). Appl of Range 0.1	ve inputs following	INPUT CHARA CREST FACTO	T TIME: 100ms CTERISTICS: S R FREQUENCY	ame as ACV RANGE: 20F	input. Iz – 1MHz.		
only. AC+DC CO additiona and aver 20 2V,	OUPLING: 1 all uncertainty age measuren RANGE 0mV, 20V 200V, 750V	low 200Hz, spe For DC>20% of multiplied by nents. % of Read	FAC rms volta the ratio (DC/	oly for sine wa ge, apply the AC rms). Appl 6 of Range	ve inputs following	INPUT CHARA CREST FACTO	T TIME: 100ms CTERISTICS: S: R FREQUENCY R DISPLAY: Acc	ame as ACV RANGE: 20F ess as multip	input. Iz – 1MHz. ole display on	AC volts.	eadin
only. AC+DC CO additiona and aver 20 2V,	OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V 200V, 750V	For DC>20% of multiplied by nents. % of Read 0.05 0.07	FAC rms volta the ratio (DC/.	oly for sine wa age, apply the AC rms). Appl 6 of Range 0.1 0.01	ve inputs following ies to rms	INPUT CHARA CREST FACTOI CREST FACTOI	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc	ADDITION	input. Iz – 1MHz. ole display on	AC volts.	eadin
only. AC+DC CC additions and aver 20 2V, AVERAGE Normal mod	OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V 200V, 750V ACV MEA e rms specific 0.025% of rang	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr	AC rms volta the ratio (DC/ ing 9 om 10% to 10	oly for sine wa age, apply the AC rms). Appl: 6 of Range 0.1 0.01	ve inputs following ies to rms or 20Hz-	INPUT CHARA CREST FACTOR CREST FACTOR	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc T FACTOR T measurements	ADDITION s.	input. Iz – 1MHz. ole display on	AC volts. ±(% of r	eadin
only. AC+DC CC additions and aver 20 2V, AVERAGE Normal mod MHz. Add (OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V 200V, 750V ACV MEA e rms specific 0.025% of rang	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr	AC rms volta the ratio (DC/ ing 9 om 10% to 10	oly for sine wa age, apply the AC rms). Appl: 6 of Range 0.1 0.01	ve inputs following ies to rms or 20Hz-	INPUT CHARA CREST FACTOR CREST FACTOR HIGH CRES Applies to rms	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc T FACTOR I measurements R:	ADDITION s.	input. Iz – 1MHz. Dle display on NAL ERROR	±(% of r	
only. AC+DC CC additions and aver 20 2V, AVERAGE Normal mod. MHz. Add C	OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V 200V, 750V ACV MEA e rms specific 0.025% of range	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr	AC rms volta the ratio (DC// ing 9 om 10% to 10 100kHz, 0.059 MHz.	oly for sine wa age, apply the AC rms). Apple of Range 0.1 0.01 0% of range, for	or 20Hz-	HIGH CREST FACTOR	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc T FACTOR measurements R: ERROR:	ADDITION s. 1 - 2 0	input. Iz – 1MHz. Dle display on NAL ERROR	±(% of r -4 4 0.2 (- 5 0.4
only. AC+DC CC additions and aver 20 2V, AVERAGE Normal mod MHz. Add C	OUPLING: I all uncertainty age measuren RANGE 0mV, 20V 200V, 750V ACV MEA e rms specific 0.025% of range (VALUE M	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr ge for 50kHz-1 b for 200kHz-1	AC rms volta the ratio (DC// ing 9 om 10% to 10 100kHz, 0.059 MHz.	oly for sine wa ge, apply the AC rms). Apple 6 of Range 0.1 0.01 0% of range, for 6 of range for	or 20Hz- 100kHz-	HIGH CRES Applies to rms CREST FACTO ADDITIONAL CY, ±(% of reac	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc T FACTOR measurement: R: ERROR: ding+% of rang	ADDITION s. 1 - 2 0 ge), 90 Days	input. Iz – 1MHz. ole display on NAL ERROR 2 – 3	±(% of r - 4 4 0.2 (Years, TCAL	– 5 D.4 ±5°C
only. AC+DC CC additions and aver 20 2V, AVERAGE Normal mod MHz. Add (OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V 200V, 750V ACV MEA e rms specific 0.025% of range (VALUE M 20Hz-	For DC>20% of multiplied by tents. % of Read 0.05 0.07 SUREMENT ations apply fr ge for 50kHz-1	AC rms volta the ratio (DC// ing 9 om 10% to 10 100kHz, 0.059 MHz.	oly for sine wa ge, apply the AC rms). Apple 6 of Range 0.1 0.01 0% of range, for 6 of range for	or 20Hz- 100kHz-	HIGH CREST FACTOR HIGH CREST FACTOR Applies to rms CREST FACTOR ADDITIONAL CY, ±(% of reactions)	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc T FACTOR measurements R: ERROR:	ADDITION S. 1 - 2 0 3e), 90 Days	input. Iz = 1MHz. Dle display on NAL ERROR 2 = 3	±(% of r - 4 4 0.2 (Years, TCAL	– 5).4 ±5°C FFICIE! range)/
only. AC+DC CC additions and aver 20 2V, AVERAGE Normal mod MHz. Add (000kHz, and	OUPLING: I al uncertainty age measuren RANGE OmV, 20V 200V, 750V ACV MEA e rms specific 0.025% of range 0.5% of range (VALUE M 20Hz- 1kHz ⁹	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr ge for 50kHz-1 e for 200kHz-1 IEASUREME	AC rms volta the ratio (DC/, ing 9 om 10% to 10 100kHz, 0.059 MHz.	oly for sine wa ge, apply the AC rms). Apple of Range 0.1 0.01 0% of range, for control of range for REPETITIVE PE 30kHz- 50kHz	or 20Hz- 100kHz-	HIGH CREST FACTOR HIGH CREST FACTOR Applies to rms CREST FACTOR ADDITIONAL CY, ±(% of reactions) 100kHz- 300 300kHz- 300 300kHz- 500	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc T FACTOR measurement: R: ERROR: ding+% of rang kHz— 500kH	ADDITION S. 1 - 2 0 2e), 90 Days 1z- 750kH 1MH	input. Iz - 1MHz. ole display on NAL ERROR 2 - 3	±(% of r - 4 4 0.2 (Years, TCAL ATURE COElding+% of	- 5 D.4 ±5°C FFICIEN range)/
only. AC+DC CO additiona and aver 20 2V, AVERAGE Normal mod MHz. Add (00kHz, and ACV PEAK RANGI 200 mV 2 V	OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V 200V, 750V ACV MEA e rms specific 0.025% of range 0.5% of range (VALUE M 20Hz- E 1kHz ⁹ V 0.08+0.	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr ge for 50kHz-1 e for 200kHz-1 EASUREME 1kHz- 10kHz 7 0.09+0.7 3 0.09+0.3	Carms volta The ratio (DC/. The ratio (ge, apply the AC rms). Apple 6 of Range 0.1 0.01 0% of range, f 6 of range for REPETITIVE PR 30kHz 50kHz 0.15+0.7 (0.15+0.3 (0	or 20Hz– 100kHz– 100kHz– 100kHz– 100kHz– 100kHz– 100kHz– 100kHz– 1025+0.7	HIGH CREST FACTOR HIGH CREST FACTOR Applies to rms CREST FACTOR ADDITIONAL CY, ±(% of react 100kHz- 300 300kHz 500 1.0+0.7 2.5 1.0+0.3 2.5	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc TT FACTOR I measurement: R: ERROR: ding+% of rang kHz- 500kh bkHz- 750kl i+0.7 5.5+(i+0.7 5.5+(i+0.3 5.5+(ADDITION ADDITION S. 1 - 2 0 3e), 90 Days 4z - 750kH Hz 1MH 0.7 9+0.3 9+0.3	input. Iz – 1MHz. Dle display on NAL ERROR 2 – 3	±(% of r -4 4 0.2 (Years, Tcal ATURE COElding+% of utside Tcal ± 0.002 + 0.00 0.002 + 0.00	- 5 0.4 ±5°C FFICIEI range)/ :5°C
only. AC+DC CC additiona and aver 20 2V, AVERAGE Normal mod MHz. Add (00kHz, and ACV PEAK RANGI 200 m 20 V 20 V	OUPLING: I al uncertainty age measuren RANGE OmV, 20V 200V, 750V ACV MEA e rms specific 0.025% of range 0.5% of	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr ge for 50kHz-1 e for 200kHz-1 MEASUREME 1kHz- 10kHz 7 0.09+0.7 3 0.09+0.3 7 0.11+0.7	CAC rms volta the ratio (DC/) ing	ge, apply the AC rms). Apply the AC rms). Apply the O.1 0.01 0% of Range O.1 0% of range, for of range for REPETITIVE PROBLE SOURCE OF CONTROL OF THE ORDER OF	or 20Hz– 100kHz– 100kHz– 100kHz– 1025+0.7 2.25+0.7	HIGH CREST FACTOR HIGH CREST FACTOR Applies to rms CREST FACTOR ADDITIONAL CY, ±(% of react 1.0+0.7 2.5 1.0+0.7 2.5 1.0+0.7 2.5 1.0+0.7 2.5	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc ST FACTOR I measurement: R: ERROR: SHZ SHZ SHZ SHZ SHZ SHZ SHZ SHZ SHZ SH	ADDITION ADDITION S. 1 - 2 0 Ge), 90 Days Hz 750kH Hz 1MH 0.7 9+0.7 9.3 9+0.7 9+0.7 9+0.7	input. Iz – 1MHz. Dle display on NAL ERROR 2 – 3	±(% of r - 4 4 0.2 (Years, TCAL XTURE COE Idding+% of to:0.002 + 0.00 0.002 + 0.00 0.004 + 0.00	- 5 D.4 ±5°C FFICIEI range)/ .5°C 3 3
only. AC+DC CC additions and aver 20 2V, AVERAGE Normal mod MHz, Add (200kHz, and COOKHz, and	OUPLING: 1 al uncertainty age measuren RANGE 0mV, 20V 200V, 750V ACV MEA e rms specific 0.025% of range 0.5% of range (VALUE M 20Hz- E 1kHz ⁹ V 0.08+0.	For DC>20% of multiplied by nents. % of Read 0.05 0.07 SUREMENT ations apply fr ge for 50kHz-1 b for 200kHz-1 IkHz- 10kHz 7 0.09+0.7 3 0.09+0.3 7 0.11+0.7 3 0.11+0.3	Carms volta The ratio (DC/. The ratio (ge, apply the AC rms). Apple 6 of Range 0.1 0.01 0% of range, for 6 of range for REPETITIVE PR 30kHz 50kHz 0.15+0.3 0.19+0.7 0.19+0.3 0.19	or 20Hz– 100kHz– 100kHz– 100kHz– 1025+0.7 2.25+0.7	HIGH CREST FACTOR HIGH CREST FACTOR Applies to rms CREST FACTOR ADDITIONAL CY, ±(% of react 1.0+0.7 2.5 1.0+0.7 2.5 1.0+0.7 2.5 1.0+0.7 2.5	T TIME: 100ms CTERISTICS: Si R FREQUENCY R DISPLAY: Acc TT FACTOR I measurement: R: ERROR: ding+% of rang kHz- 500kh bkHz- 750kl i+0.7 5.5+(i+0.7 5.5+(i+0.3 5.5+(ADDITION ADDITION S. 1 - 2 0 Ge), 90 Days Hz 750kH Hz 1MH 0.7 9+0.7 9.3 9+0.7 9+0.7 9+0.7	input. Iz – 1MHz. Dle display on NAL ERROR 2 – 3	±(% of r -4 4 0.2 (Years, Tcal ATURE COElding+% of utside Tcal ± 0.002 + 0.00 0.002 + 0.00	- 5 0.4 ±5°C FFICIEI range)/ :5°C 3 3 3

DEFAULT MEASUREMENT RESOLUTION: 4 digits.

NON-REPETITIVE PEAK: 10% of range per μs typical slew rate for single spikes. PEAK WIDTH: Specifications apply for all peaks ${\ge}1\mu s.$

PEAK MEASUREMENT WINDOW: 100ms per reading.

MAXIMUM INPUT: ±1100V peak, 2×10⁷V•Hz (for inputs above 20V).

AC VOLTS (cont'd)

SETTLING CHARACTERISTICS:

Normal Mode (rms, avg.) <300ms to 1% of step change

<450ms to 0.1% of step change <500ms to 0.01% of step change

Low Frequency Mode (rms) <5s to 0.1% of final value COMMON MODE REJECTION: For $1k\Omega$ imbalance in either lead: >60dB for line frequency ±0.1%.

MAXIMUM VOLT • Hz PRODUCT: 2 × 107V • Hz (for inputs above 20V).

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

AC VOLTS NOTES

- 1. Specifications apply for sinewave input, AC + DC coupling, 1 power line cycle, digital filter off, following 55 minute warm-up.
- 2. Temperature coefficient applies to rms or average readings. For frequencies above 100kHz, add 0.01% of reading/°C to temperature coefficient.
- 3. For 1% to 5% of range below 750V range, and for 1% to 7% of 750V range, add 0.01% to range uncertainty. For inputs from 200kHz to 2MHz, specifications apply above 10% of
- 4. Add 0.001% of reading × (Vin/100V)2 additional uncertainty above 100V rms.
- 5. Typical values.
- 6. For DELAY=0, digital filter off, display off (or display in "hold" mode). Internal Trigger, Normal mode. See Operating Speed section for additional detail. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). Applies for rms and average mode. Low frequency mode rate is typically 0.2 readings per second.
- 7. For overrange readings 200-300% of range, add 0.1% of reading. For 300-400% of range, add 0.2% of reading.
- 8. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 9. AC peak specifications assume AC + DC coupling for frequencies below 200Hz.
- 10. Specifications apply for 10 reading digital filter. If no filter is used, add 0.25% of range typical uncertainty

TEMBEDATIIDE

20,000+700+250

11. Subject to peak input voltage specification.

OHMS

TWO-WIRE AND FOUR-WIRE OHMS (2W and 4W Ohms Functions)13

RANGE	FULL SCALE	RESOLUTION	DEFAULT RESOLUTION	CURRENT ¹ Source	OPEN CIRCUIT ¹²	MAXIMUM LEAD RESISTANCE ²	MAXIMUM OFFSET COMPENSATION ³	COEFFICIENT ±(ppm of reading + ppm of range)/°C Outside TCAL ±5°
20 Ω	21.000000	1 μΩ	10 μΩ	9.2 mA	5 V	1.7 Ω	±0.2 V	8 + 1.5
200 Ω	210.00000	10 μΩ	100 μΩ	0.98 mA	5 V	12 Ω	±0.2 V	4 + 1.5
2 kΩ	2100.0000	100 μΩ	$1 \text{ m}\Omega$	0.98 mA	5 V	100 Ω	-0.2 V to +2 V	3.0 + 0.2
20 kΩ	21.000000	$1~\mathrm{m}\Omega$	$10 \text{ m}\Omega$	89 μΑ	5 V	1.5 kΩ	-0.2 V to +2 V	4 + 0.2
200 kΩ	210.00000	$10 \text{ m}\Omega$	$100 \text{ m}\Omega$	7 μA	5 V	1.5 kΩ		11 + 0.2
$2~\mathrm{M}\Omega$ 4	2.1000000	$100~\mathrm{m}\Omega$	1 Ω	770 nA	5 V	$1.5 \text{ k}\Omega$		25 + 0.2
$20 \mathrm{M}\Omega$ 4	21.000000	1Ω	10 Ω	70 nA	5 V	$1.5 \text{ k}\Omega$		250 + 0.2
$200 \mathrm{M}\Omega$ ⁴	210.00000	10 Ω	100 Ω	4.4 nA	5 V	$1.5 \text{ k}\Omega$		4000 + 10
1 G Ω ⁴	1.0500000	100 Ω	1 kΩ	4.4 nA	5 V	1.5 kΩ		4000 + 10

RESISTANCE	ACCURAC	C Y 5 ±(ppm	of reading + p	pm of range)
RANGE	24 Hours ⁶	90 Days ⁷	1 Year ⁷	2 Years ⁷
20 Ω	29 + 7	52 + 7	72 + 7	110 + 7
200 Ω	24 + 7	36 + 7	56 + 7	90 + 7
2 kΩ	22 + 4	33 + 4	50 + 4	80 + 4.5
20 kΩ	19 + 4	32 + 4	50 + 4	80 + 4.5
200 kΩ	20 + 4.5	72 + 4.5	90 + 4.5	130 + 5
$2 M\Omega$ 4	50 + 4.5	110 + 4.5	160 + 4.5	230 + 5
$20~\mathrm{M}\Omega$ ⁴	160 + 4.5	560 + 4.5	900 + 4.5	1100 + 5
200 M Ω ⁴	3000 + 100	10000 + 100	20000 + 100	30000 + 100
1 GΩ ⁴	9000 + 100	20000 +100	40000 + 100	60000 + 100

RESISTANCE UNCERTAINTY = \pm [(ppm of reading) × (measured value) + (ppm of range) × (range used)] / 1,000,000.

% ACCURACY = (ppm accuracy) / 10,000.

1PPM OF RANGE = 2 counts for ranges up to $200M\Omega$ and 1 count on $1G\Omega$ range at 61/2 digits.

2-WIRE ACCURACY7 ±(ppm	of range)		
RANGE	20 Ω	200 Ω	$2 \ k\Omega$
ADDITIONAL UNCERTAINTY (inside T _{CAL} ± 5°C)	300 ppm	30 ppm	3 ppm
TEMPERATURE COEFFICIENT (outside TCAL ±5°C)	70ppm/°C	7ppm/°C	0.7ppm/°C

SPEED AND	ACCURACT	90 Days	
		ACCURACY	
	±(ppm of reading+p	pm of range+ppm of	range rms noise12)
	1PLC	0.1PLC11	0.01PLC ^{8,11}
RANGE	DFILT Off	DFILT Off	DFILT Off
20 Ω	52+ 7+0.6	52+ 30+10	110+200+ 35
200 Ω	36+ 7+0.6	36+ 30+10	110+200+ 35
2 kΩ	33+ 4+0.2	33+ 24+ 1	130+230+ 5
20 kΩ	32+4+0.2	32 + 24 + 2	130+230+ 5
200 kΩ	72+4.5+0.5	72 + 25 + 4	150+300+ 10
$2 \mathrm{M}\Omega^{ 4}$	110+4.5+2	110+ 25+15	150+300+150
$20~\mathrm{M}\Omega$ 4	560+ 4.5+ 5	560+ 30+20	560+300+150
200 MO 4	10.000+100+40	10.000+120+80	10.000+700+250

90 Dave

20,000+120+80

20,000+100+40 PLC = Power Line Cycles. DFILT = Digital Filter.

SPEED AND ACCUPACYS

1 GΩ 4

SETTLING CHARACTERISTICS: For first reading following step change, add the total 90-day measurement error for the present range. Pre-programmed settling delay times are for <200pF external circuit capacitance. For 200M Ω and $1G\Omega$ ranges, add total 1 year errors for first reading following step change. Reading settling times are affected by source impedance and cable dielectric absorption characteristics.

OHMS MEASUREMENT METHOD: Constant current.

OFFSET COMPENSATION: Available on $20\Omega - 20k\Omega$ ranges.

OHMS VOLTAGE DROP MEASUREMENT: Available as a multiple display.

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

2-WIRE RESISTANCE READING RATES^{10,12} 20Ω , 200Ω , $2k\Omega$, and $20k\Omega$ Ranges

								READINGS/S	ECOND WITH
	MEASUREMENT		DEFAULT	READINGS/SECO	ND TO MEMORY	READINGS/SECO	ND TO IEEE-488	TIME STAMP	TO IEEE-488
NPLC	APERTURE	BITS	DIGITS	Auto Zero Off	Auto Zero On	Auto Zero Off	Auto Zero On	Auto Zero Off	Auto Zero On
10	167 ms (200 ms)	28	71/2	6 (5.1)	2 (1.7)	5 (4)	2 (1.6)	5 (4)	2 (1.6)
2	33.4 ms (40 ms)	26	71/2	30 (25)	8 (7.1)	28 (23)	8 (6.8)	27 (22)	8 (6.7)
1	16.7 ms (20 ms)	25	61/2	58 (48)	40 (34)	53 (45)	37 (32)	49 (41)	35 (31)
0.2^{11}	3.34 ms (4 ms)	22	61/2	219 (189)	109 (97)	197 (162)	97 (87)	140 (129)	79 (74)
0.1^{11}	1.67 ms (2 ms)	21	51/2	300 (300)	126 (118)	248 (245)	112 (108)	164 (163)	89 (88)
0.02^{11}	334 μs (400 μs)	19	51/2	300 (300)	130 (130)	249 (249)	114 (114)	165 (165)	91 (91)
0.01^{11}	167 μs (167 μs)	16	41/2	421 (421)	135 (135)	306 (306)	114 (114)	189 (189)	92 (92)
$0.01^{8,11}$	167 μs (167 μs)	16	41/2	2000 (2000)		2000(2000)			

2-WIRE RESISTANCE READING RATES^{10,12} 20M Ω Range

NPLC	MEASUREMENT APERTURE	BITS	DEFAULT DIGITS		,	OND TO A		TIME	STAMP	ECOND W TO IEEE Auto Ze	-488
10	167 ms (200 ms)	28	71/2	6	(5.1)	1	(0.8)	2	(1.8)	1	(0.8)
2	33.4 ms (40 ms)	26	71/2	30	(25)	1	(0.8)	16(14.5)	1	(0.8)
1	16.7 ms (20 ms)	25	$6^{1/2}$	58	(48)	4	(3.8)	25	(22)	4	(3.5)
0.1^{11}	1.67 ms (2 ms)	21	$5^{1/2}$	300	(296)	5	(5)	43	(39)	5	(4.7)
0.02^{11}	334 µs (400 µs)	19	$5^{1/2}$	300	(300)	5	(5)	43	(43)	5	(5)
0.01^{11}	167 μs (167 μs)	16	41/2	412	(412)	5	(5)	43	(43)	5	(5)

4-WIRE RESISTANCE READING RATES^{10,12} Any Range

NPLC	MEASUREMENT APERTURE	BITS	DEFAULT DIGITS	RÉADINGS or READINGS WITH TIME STAMP/SECOND TO MEMORY or IEEE-488, AUTO ZERO ON Offset Comp. Off Offset Comp. On
10	167 ms (200 ms)	28	71/2	2 (1.6) 0.6 (0.5)
2	33.4 ms (40 ms)	26	71/2	7 (6.1) 2 (1.6)
1	16.7 ms (20 ms)	25	61/2	12 (11.6) 3 (3.7)
0.1^{11}	1.67 ms (2 ms)	21	51/2	20 (20) 6 (6)
0.01^{11}	167 μs (167 μs)	16	41/2	21 (21) 7 (7)

OHMS NOTES

- 1. Current source is typically ±9% absolute accuracy.
- 2. Total of measured value and lead resistance cannot exceed full scale.
- 3. Maximum offset compensation plus source current times measured resistance must be less than source current times resistance range selected.
- 5. Specifications are for 1 power line cycle, 10 reading digital filter, Auto Zero on, 4-wire mode, offset compensation on (for 20Ω to $20k\Omega$ ranges).
- 6. For $T_{CAL} \pm 1^{\circ}C$, following 55 minute warm-up. T_{CAL} is ambient temperature at calibration (23°C at the factory).
- 7. For Tcal ±5°C, following 55-minute warm-up. Specifications include traceability to US
- $8.\ In burst mode, display of f.\ Burst mode\ requires\ Auto\ Zero\ refresh\ (by\ changing\ resolution$ or measurement function) once every 24 hours.
- 9. For TCAL ±5°C, 90-day accuracy, 1-year and 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 10. For DELAY=0, digital filter off, internal trigger, display off. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). Speed for $200 k\Omega$ range is typically 100 slower than $20k\Omega$ range; speed for $2M\Omega$ range is typically at times faster than $20M\Omega$ range; speed for $1G\Omega$ range is typically 30%-50% as fast as $20M\Omega$ range. See Operating Speed section for additional detail.
- 11. Ohms measurements at rates lower than 1 power line cycle are subject to potential noise pickup. Care must be taken to provide adequate shielding.
- 12. Typical values.
- 13. When measuring resistance of inductive loads, the inductance of that load must be 10mH

DC AMPS

DCI INPUT CHARACTERISTICS AND ACCURACY⁴

DC:	Del INI et enmitterenantes harb hecconter									
	FULL		DEFAULT	MAXIMUM BURDEN	±(pp	ACCU om of reading	RACY ¹ + ppm of rai	TEMPERATURE COEFFICIENT ±(ppm of reading + ppm of range)/°C		
RANGE	SCALE	RESOLUTION	RESOLUTION	VOLTAGE ⁶	24 Hours ²	90 Days ³	1 Year ³	2 Years ³	Outside TCAL ±5°C	
200 μA	210.00000	10 pA	100 pA	0.25 V	63 + 25	300 + 25	500 + 25	1350 + 25	58 + 7	
2 mA	2.1000000	100 pA	1 nA	0.31 V	64 + 20	300 + 20	400 + 20	750 + 20	58 + 5	
20 mA	21.000000	1 nA	10 nA	0.4 V	65 + 20	300 + 20	400 + 20	750 + 20	58 + 5	
200 mA	210.00000	10 nA	100 nA	0.5 V	96 + 20	300 + 20	500 + 20	750 + 20	58 + 5	
2 A	2.1000000	100 nA	1 μΑ	1.5 V	500 + 20	600 + 20	900 + 20	1350 + 20	58 + 5	

DC CURRENT UNCERTAINTY = ±[(ppm reading)×(measured value) + (ppm of range)×(range used)] / 1,000,000.

% ACCURACY = (ppm accuracy) / 10,000.

10PPM OF RANGE = 20 counts at 61/2 digits.

DCI READING RATES^{5,9}

NPLC	MEASUREMENT APERTURE	BITS	DEFAULT DIGITS		GS/SECO ero Off		MEMORY ero On		GS/SECO Zero Off) IEEE-488 Zero On	TIME	DINGS/SI STAMP Zero Off	TO II	EE-48	8
10	167 ms (200 ms)	28	$7^{1/2}$	6	(5.1)	2	(1.7)	6	(4.8)	2	(1.6)	6	(4.8)	2	(1.6)	
2	33.4 ms (40 ms)	26	71/2	30	(24)	10	(8.2)	28	(23)	9	(7.8)	27	(22)	9	(7.7)	
1	16.7 ms (20 ms)	25	$6^{1/2}$	57	(48)	45	(38)	53	(45)	41	(35)	48	(41)	40	(32)	
0.2	3.34 ms (4 ms)	22	$6^{1/2}$	217	(195)	122	(111)	186	(168)	109	(98)	135	(125)	88	(85)	
0.1	1.67 ms (2 ms)	21	$5^{1/2}$	279	(279)	144	(144)	234	(229)	123	(123)	158	(156)	99	(98)	
0.02	334 μs (400 μs)	19	$5^{1/2}$	279	(279)	148	(148)	234	(234)	130	(130)	158	(158)	101	(101)	
0.01	167 μs (167 μs)	16	$4^{1/2}$	298	(298)	150	(150)	245	(245)	132	(132)	164	(164)	102	(102)	
0.01^{7}	167 μs (167 μs)	16	41/2	2000 (2000)			2000	(2000)							Н۷

90 Days SPEED AND ACCURACY8

		ACCURACY	
	±(ppm of reading+p	opm of range+ppm o	of range rms noise9)
	1PLC	0.1PLC	0.01PLC ⁷
RANGE	DFILT Off	DFILT Off	DFILT Off
200 μΑ	300+25+0.3	300+50+8	300+200+80
2 mA	300+20+0.3	300+45+8	300+200+80
20 mA	300+20+0.3	300+45+8	300+200+80
200 mA	300+20+0.3	300+45+8	300+200+80
2 A	600+20+0.3	600+45+8	600+200+80

PLC = Power Line Cycle. DFILT = Digital Filter.

SETTLING CHARACTERISTICS: <500µs to 50ppm of step size. Reading settling times are affected by source impedance and cable dielectric absorption characteristics. Add 50ppm of range for first reading after range change.

MAXIMUM ALLOWABLE INPUT: 2.1A, 250V.

OVERLOAD PROTECTION: 2A fuse (250V), accessible from front (for front input) and rear (for rear input).

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

DC AMPS NOTES

- 1. Specifications are for 1 power line cycle, Auto Zero on, 10 reading digital filter.
- 2. For Tcal ± 1°C, following 55 minute warm-up.
- 3. For $T_{CAL} \pm 5^{\circ}C$, following 55 minute warm-up. Specifications include traceability to US
- 4. Add 50 ppm of range for current above 0.5A for self heating.
- 5. For DELAY=0, digital filter off, display off. Internal trigger. Aperture is reciprocal of line frequency. These rates are for 60Hz and (50Hz). See Operating Speed section for additional detail.
- 6. Actual maximum voltage burden = (maximum voltage burden) × (Imeasured/Ifull scale).
- 7. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.
- 8. For Tcal ±5°C, 90-day accuracy. 1-year and 2-year accuracy can be found by applying the same speed accuracy ppm changes to the 1-year or 2-year base accuracy.
- 9. Typical values.

DC IN-CIRCUIT CURRENT

The DC in-circuit current measurement function allows a user to measure the current through a wire or a circuit board trace without breaking the circuit. When the In-Circuit Current Measurement function is selected, the 2001 will first perform a 4-wire resistance measurement, then a voltage measurement, and will display the calculated current.

TYPICAL RANGES:

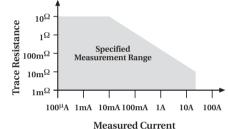
Current: Trace Resistance:

100µA to 12A. $1m\Omega$ to 10Ω typical.

Voltage:

±200mV max. across trace.

Speed:


4 measurements/second at 1 power line cycle.

Accuracy:

±(5% + 2 counts). For 1 power line cycle, Auto Zero on, 10 reading digital filter, Tcal±5°C, after being properly zeroed.

90 days, 1 year or 2 years.

MEASUREMENT RANGE CHART

TEAADED A TIJDE

AC AMPS

AC magnitude: RMS or Average.

ACI INPUT CHARACTERISTICS

RMS RANGE	PEAK INPUT	FULL SCALE RMS	RESOLUTION	DEFAULT RESOLUTION	MAXIMUM BURDEN VOLTAGE ⁵	COEFFICIENT ±(% of reading + % of range)/°C Outside Tcal ±5°C
200 μΑ	1 mA	210.0000	100 pA	1 nA	0.25 V	0.01 + 0.001
2 mA	10 mA	2.100000	1 nA	10 nA	0.31 V	0.01 + 0.001
20 mA	100 mA	21.00000	10 nA	100 nA	0.4 V	0.01 + 0.001
200 mA	1 A	210.0000	100 nA	1 μΑ	0.5 V	0.01 + 0.001
2 A	2 A	2.100000	1 μΑ	10 μA	1.5 V	0.01 + 0.001

ACI ACCURACY^{1,2} 90 Days, 1 Year or 2 Years, TcAL ±5°C, for 5% to 100% of range, ±(% of reading + % of range)

RANGE	20Hz-50Hz	50Hz-200Hz	200Hz-1kHz	1kHz-10kHz	10kHz-30kHz³	30kHz-50kHz ³	50kHz-100kHz ³
200 μΑ	0.35 + 0.015	0.2 + 0.015	0.4 + 0.015	0.5 + 0.015			
2 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
20 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.12 + 0.015	0.25 + 0.015	0.3 + 0.015	0.5 + 0.015
200 mA	0.3 + 0.015	0.15 + 0.015	0.12 + 0.015	0.15 + 0.015	0.5 + 0.015	1 + 0.015	3 + 0.015
2 A	0.35 + 0.015	0.2 + 0.015	0.3 + 0.015	0.45 + 0.015	1.5 + 0.015	4 + 0.015	

AC CURRENT UNCERTAINTY = \pm [(% of reading) × (measured value) + (% of range) × (range used)] / 100.

PPM ACCURACY = $(\% \text{ accuracy}) \times 10,000.$ 0.015% OF RANGE = 30 counts at $5\frac{1}{2}$ digits.

AC COUPLING: For AC only coupling, add the following % of reading:

20-50Hz 50-100Hz 100-200Hz 0.55 0.09 0.015 rms, Average

AC+DC COUPLING: For DC>20% of AC rms voltage, apply the following additional uncertainty, multiplied by the ratio (DC/AC rms).

> % of Range % of Reading

rms, Average 0.05 0.1

ACI READING RATES^{3,4}

NPLC	MEASUREMENT APERTURE	BITS	DEFAULT DIGITS		GS/SECO Zero Off		MEMORY ero On		IGS/SECC Zero Off		IEEE-488 Zero On	TIME	DINGS/S STAMP Zero Off	TO IE	
10	167 ms (200 ms)	28	$6^{1/2}$	6	(5.1)	2	(1.7)	6	(4.9)	2	(1.6)	6	(4.8)	2	(1.6)
2	33.4 ms (40 ms)	26	51/2	30	(25)	9	(7.9)	28	(23)	9	(7.6)	27	(22)	9	(7.5)
1	16.7 ms (20 ms)	25	$5^{1/2}$	57	(48)	39	(35)	53	(45)	37	(33)	49	(41)	34	(30)
0.1	1.67 ms (2 ms)	21	$5^{1/2}$	157	(136)	70	(70)	123	(123)	62	(62)	107	(107)	56	(53)
0.01	167 μs (167 μs)	16	41/2	156	(136)	70	(70)	140	(140)	63	(63)	113	(113)	56	(56)
0.01^{6}	167 μs (167 μs)	16	41/2	2000 (2000)			2000	(2000)						

SETTLING CHARACTERISTICS: <300ms to 1% of step change

<450ms to 0.1% of step change

<500ms to 0.01% of step change

AUTORANGING: Autoranges up at 105% of range, down at 10% of range.

HIGH CREST FACTOR ADDITIONAL ERROR ±(% of reading)

Applies to rms measurements.

CREST FACTOR 1 - 22 - 33 - 44 - 5ADDITIONAL ERROR 0.1 0.2 0.4

AVERAGE ACI MEASUREMENT

Rms specifications apply for 10% to 100% of range.

AC AMPS NOTES

- $1. \ Specifications \ apply \ for \ sine wave \ input, AC+DC \ coupling, 1 \ power \ line \ cycle, \ digital \ filter \ off,$ following 55 minute warm-up.
- 2. Add 0.005% of range uncertainty for current above 0.5A rms for self-heating.
- 3. Typical values.
- ${\bf 4.\,For\,DELAY=0,\,digital\,filter\,off,\,display\,off,\,internal\,trigger.\,Aperture\,is\,reciprocal\,of\,line}$ frequency. These rates are for 60Hz and (50Hz).
- 5. Actual maximum voltage burden = (maximum voltage burden) × (Imeasured/Ifull scale).
- 6. In burst mode, display off. Burst mode requires Auto Zero refresh (by changing resolution or measurement function) once every 24 hours.

FREQUENCY COUNTER

FREQUENCY/PE	RIOD INPUT	CHARACTER	90 I	Days, 1 Year,	or 2 Years				
	FREQUENCY RANGE ¹	PERIOD RANGE	DEFAULT RESOLUTION	MINIM 1Hz–1MHz	UM SIGNA 1–5MHz	AL LEVEL 5–15MHz	MAXIMUM INPUT	TRIGGER Level	ACCURACY ±(% of reading)
AC Voltage Input AC Current Input	1Hz-15 MHz 1Hz- 1 MHz	67 ns – 1 s 1 μs – 1 s	5 digits 5 digits	60 mV 150 μA	60 mV	350 mV	1100 V pk¹ 1 A pk	0–600V 0–600mA	0.03 0.03

MEASUREMENT TECHNIQUE: Unique pulse count/time count at overflow.

TIME BASE: 7.68MHz ± 0.01%, 0°C to 55°C.

READING TIME: 420ms maximum.

TRIGGER LEVEL ADJUSTMENT: Trigger level is adjustable in 0.5% of range steps to ±60% of range in real-time using the up and down range buttons.

FREQUENCY RANGING: Autoranging from Hz to MHz.

FREQUENCY COUPLING: AC + DC or AC only.

FREQUENCY NOTES

1. Subject to 2 × 107V • Hz product (for inputs above 20V).

TEMPERATURE (RTD)

	RESO-		4-WIRE ACCURACY ³					
RANGE	LUTION	1 Hour ²	90 Days	1 Year	2 Years			
-100° to $+100^{\circ}$ C	0.001°C	±0.005°C	$\pm 0.05^{\circ}C$	±0.08°C	±0.12°C			
-200° to $+630^{\circ}$ C	0.001°C	$\pm 0.005^{\circ} C$	$\pm 0.12^{\circ} C$	±0.14°C	±0.18°C			
-212° to $+180^{\circ}F$	$0.001^{\circ}\mathrm{F}$	±0.009°F	$\pm 0.09^{\circ}F$	$\pm 0.15^{\circ}F$	$\pm 0.22^{\circ}F$			
-360° to $+1102^{\circ}$ F	0.001°F	±0.009°F	±0.15°F	±0.18°F	±0.33°F			

RTD TYPE: 100Ω platinum; DIN 43 760 or IPTS-68, alpha 0.00385, 0.00390, 0.003916, or 0.00392, 4-wire.

MAXIMUM LEAD RESISTANCE (each lead): 12Ω (to achieve rated accuracy). SENSOR CURRENT: 1mA (pulsed).

COMMON MODE REJECTION: <0.005°C/V at DC, 50Hz, 60Hz and 400Hz, (100 Ω imbalance, LO driven).

TEMPERATURE COEFFICIENT: $\pm (0.0013\% + 0.005^{\circ}\text{C})/^{\circ}\text{C}$ or $\pm (0.0013\% + 0.01^{\circ}\text{F})/^{\circ}$ °C outside Tcal ±5°C.

RTD TEMPERATURE READING RATES¹ (2- or 4-Wire)

READINGS or READINGS WITH TIME STAMP/SECOND

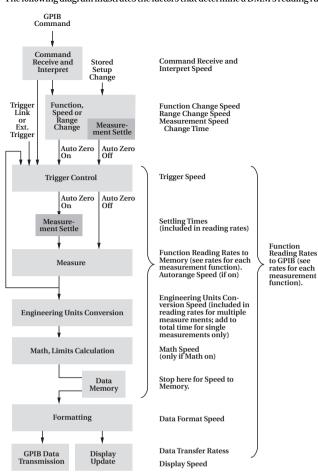
	TO MEMORY or IEEE-488						
NPLC	Auto Zero Off	Auto Zero On					
10	1 (1)	1 (1)					
2	5 (4.3)	4 (3.6)					
1	7 (6.5)	6 (5.5)					
0.1	12 (10.8)	9 (9)					
0.01	12 (12)	10 (10)					

TEMPERATURE (Thermocouple)

THERMO- COUPLE TYPE	RANGE	DEFAULT RESOLUTION	ACCURACY⁴
J	-200° to + 760° C	0.1°C	±0.5°C
K	-200° to +1372°C	0.1°C	±0.5°C
T	-200° to $+400^{\circ}$ C	0.1°C	±0.5°C
E	-200° to +1000°C	0.1°C	±0.6°C
R	0° to +1768°C	1 °C	±3 °C
S	0° to +1768°C	1 °C	±3 °C
В	+350° to +1820°C	1 °C	±5 °C

TC TEMPERATURE READING RATES¹

					KEADINGS,	SECOND	
	READING	GS/SECOND	READING	S/SECOND	WITH TIME STAMP		
	TO N	1EMORY	TO II	EE-488	TO IEE	E-488	
	Auto	o Zero	Auto	Zero	Auto Zero		
NPLC	Off	On	Off	On	Off	On	
10	6 (5.1)	2 (1.7)	4 (3.4)	2 (1.4)	4 (3.4)	2 (1.4)	
2	30 (25)	9 (7.6)	28 (23)	9 (7.3)	27 (22)	8 (7.2)	
1	57 (48)	43 (37)	53 (45)	40 (32)	49 (41)	37 (30)	
0.1	139 (139)	95 (95)	126 (123)	85 (84)	99 (99)	72 (72)	
0.01	177 (177)	98 (98)	156 (156)	87 (87)	119 (119)	73 (73)	


TEMPERATURE NOTES

- 1. Typical speeds for Auto Zero on. For DELAY=0, digital filter off, display off, internal trigger. Rates are for 60Hz and (50Hz).
- 2. For ambient temperature $\pm 1^{\circ}$ C, measured temperature $\pm 10^{\circ}$ C, 10-reading digital filter.
- 3. Excluding probe errors. Tcal ±5°C.
- 4. Relative to external 0°C reference junction; exclusive of thermocouple errors. Junction temperature may be external. Applies for 90 days, 1 year or 2 years, Tcal ±5°C.

DEADINGS/SECOND

OPERATING SPEED

The following diagram illustrates the factors that determine a DMM's reading rate.

COMMAND RECEIVE AND INTERPRET SPEED

EACTECT

	FASIESI	TYPICAL	SLOWEST
Time per character Characters per second	0.16 ms 6250	0.28 ms 3751	0.66 ms 1515
TYPICAL COMMAND TIM Command	ES	Receive and Interpret Time	Rate (per second)
SENSE1:VOLTAGE:AC:			
RESOLUTION MAXIMUN	1	9.4 ms	106
VOLT:AC:RES:MAX		4.1 ms	243
SENSE1:FUNC 'VOLT:AC	,"	6.3 ms	158
RESISTANCE:RANGE:UF	PPER 1E9	9.0 ms	111
STATUS:QUEUE:CLEAR		5.1 ms	196
STAT:QUE:CLE		3.1 ms	322
*TRG		1.2 ms	833

TVDICAL

CLOWECT

MEASUREMENT SPEED CHANGE TIMES^{1,2}

Typical delay before first reading after making a speed change.

FUNCTION	From	To	AUTO ZERO OFF Time	AUTO ZERO ON Time
DCV, DCI, ACI	Any	≤ 0.1 PLC	66 ms	44 ms
	Any	1 PLC	190 ms	140 ms
	Any	10 PLC	1540 ms	1195 ms
ACV	Any	≤ 0.1 PLC	120 ms	100 ms
	Any	1 PLC	250 ms	197 ms
	Any	10 PLC	1600 ms	1250 ms
Ohms (2-wire)	Any	≤ 0.1 PLC	69 ms	57 ms
	Any	1 PLC	195 ms	170 ms
	Any	10 PLC	1540 ms	1370 ms
Ohms (4-wire)	Any	≤ 0.1 PLC	110 ms	46 ms
	Any	1 PLC	240 ms	165 ms
	Any	10 PLC	1590 ms	1370 ms
TC Temperature	Any	≤ 0.1 PLC	80 ms	55 ms
	Any	1 PLC	195 ms	170 ms
	Any	10 PLC	1545 ms	1370 ms

FUNCTION CHANGE SPEED¹

TOTAL TOTAL CHARAGE	31 LLD							
FROM	TO.		AUTO	ZERO OFF	AUTO ZERO ON			
FROM Function	TO Function	Range(s)	TIME	RATE (per second)	TIME	RATE (per second)		
Any	DCV	200mV, 2V	8.1 ms	120	36 ms	27		
•		20V	8.1 ms	120	8.6 ms	110		
		200V	24 ms	40	52 ms	19		
		1000V	11 ms	160	10.2 ms	190		
Any	ACV	Any	563 ms	1.8	563 ms	1.8		
Any except ACI	DCI	200μA, 2mA, 20mA	4.5 ms	220	5.1 ms	190		
		200mA, 2A	6.0 ms	160	6.6 ms	150		
ACI		Any	21.1 ms	45	22 ms	45		
Any	ACI	Any	521 ms	1.9	521 ms	1.9		
Any	Ohms (2-wire)	20Ω, 200Ω, 2kΩ, 20kΩ	6.0 ms	165	34 ms	29		
		$200 \mathrm{k}\Omega$	26 ms	38	61 ms	16		
		$2M\Omega$	95 ms	10.5	425 ms	2.4		
		$20\mathrm{M}\Omega$	265 ms	4	690 ms	1.4		
		200MΩ, 1GΩ	366 ms	3	5.5 ms	180		
Any	Ohms (4-wire)	20Ω, 200Ω, 2kΩ, 20kΩ	12 ms	140	34.1 ms	29		
•		$200 \mathrm{k}\Omega$	26 ms	38	60 ms	16		
Any except ACI and Ohms	Frequency8	Any	61 ms	16	60 ms	17		
ACI, Ohms (4-wire)	1	Any	79 ms	12	75 ms	13		
Ohms (2-wire)		Any	418 ms	2	416 ms	2		
Any	RTD Temp. (2-wire)	Any	6.0 ms	165	33 ms	30		
J	RTD Temp. (4-wire)		11.5 ms	150	37 ms	27		
	TC Temp.	Any	8.0 ms	125	35 ms	28		

RANGE CHAN	GE SPEED ¹		AUTO	ZERO OFF	AUTO ZERO ON		
				RATE		RATE	
FUNCTION	From	To	TIME	(per second)	TIME	(per second)	
DCV	200mV, 2V	20V	4.5 ms	220	3.1 ms	190	
	200V, 1000V	20V	8.0 ms	120	8.6 ms	110	
	200mV, 2V, 20V	200mV, 2V, 20V	4.5 ms	220	36 ms	27	
	200V, 1000V	200mV, 2V	8.0 ms	120	38 ms	26	
	200mV, 2V, 20V	200V	24 ms	41	52 ms	19	
	1000V	200V	9 ms	110	37 ms	27	
	Any	1000V	11 ms	165	10.1 ms	190	
ACV	Any	Any	563 ms	1.8	563 ms	1.8	
DCI	Any	200µA, 2mA, 20mA	4.5 ms	220	5.2 ms	190	
	•	200mA, 2A	6.0 ms	160	6.6 ms	150	
ACI	Any	Any	525 ms	1.9	525 ms	1.9	
Ohms (2-wire)	Any	20Ω, 200Ω, 2kΩ, 20kΩ	6.0 ms	160	34 ms	29	
	Any	200kΩ	26 ms	38	66 ms	15	
	Any	$2M\Omega$	95 ms	10	420 ms	2.3	
	Any	$20 \mathrm{M}\Omega$	265 ms	3.7	690 ms	1.4	
	Any	200MΩ, 1GΩ	366 ms	2.7	5.5 ms	180	
Ohms (4-wire)	Any	20Ω , 200Ω , $2k\Omega$, $20k\Omega$	8 ms	160	34 ms	29	
	Any	200kΩ	26 ms	38	66 ms	16	

TRIGGER SPEED (External Trigger or Trigger-Link)

	Auto Zero On	Auto Zero Off
Trigger Latency: Trigger Jitter:	1.2 ms typical	2 μs ±0.5 μs

ENGINEERING UNIT CONVERSION SPEED

Included in reading times for multiple measurements; add to total time for single measurements only.

CONFICURATION	TIME	DATE (
CONFIGURATION	TIME	RATE (per second)
DCV	2.4 ms	416
DCV, Filter on	2.4 ms	416
DCV, Relative on	2.5 ms	400
DCV, Ratio on	3.7 ms	270
ACV	5.3 ms	188
ACV, Relative on	5.3 ms	188
ACV, Filter on	6.8 ms	147
ACV, dB	9.4 ms	106
ACV. dBm	17.3 ms	57

DISPLAY SPEED

Display updated at up to 20 times per second. Display update can be suspended by holding the display (press ENTER) or setting Display Enable Off from GPIB.

SINGLE FUNCTION SCAN SPEED4 (Internal Scanner)

MATH AND	LIMITS	CALCULA	MOIT	SPEED ¹	

CALCULATION	NOMINAL TIME	NOMINAL RATE (per second)	MAXIMUM TIME
mX + b	0.35 ms	2850	0.44 ms
Percent	0.60 ms	1660	0.64 ms
Limits ⁶	0.35 ms	2850	0.37 ms
None	0.07 ms		0.08 ms

GPIB DATA FORMATTING TRANSMISSION TIME³

FORMAT	READIN ONL' Time		READINGS WITH TIME STAMP Time Rdg.,			
DREAL (Double precision real)	0.30 ms	3330	2.0 ms	500		
SREAL (Single precision real)	0.37 ms	2710	2.1 ms	475		
ASCII	3.9 ms	255	8.2 ms	120		

SHITGEL TON	CHOIL	JC/NIN JI	LLD (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ii Scaiiii	CI)								
	DCV	(20V) ⁷		e Ohms $(\Omega)^7$		Ohms $(\Omega)^7$	Α	CV	Freau	encv	Tempe			TD re (2-Wire)
ТҮРЕ	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	•	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)	Time per Chan.	Rate (Chan./ second)
Ratio or Delta ⁵ (2 channels)	4 ms	250	4.4 ms	230	18.5 ms	54								
Fast Scan (using solid state channels)	5.5 ms	181	7 ms	140			520 ms	1.9	958 ms	1	13.8 ms	72		
Normal Scan	10.3 ms	97	12.1 ms	80	21 ms	47	532 ms	1.8	974 ms	1	18 ms	55	95 ms	10

MIXED FUNCTION SCAN SPEED¹ (Internal Scanner)

SCAN CONFIGURATION (Channels)	Average Time/ Channel	Average Rate (Channel/s)
5 chan. DCV, 5 chan. 2wΩ	20 ms	50
3 DCV, 3 2wΩ, 4 TC	22 ms	45
5 2wRTD, 5 TC	60 ms	17
5 2wΩ, 5 2wRTD	60 ms	17
9 DCV, 1 ACV	73 ms	13
2 DCV, 1 ACV, 2 2wΩ, 1 4wΩ	122 ms	8
5 DCV, 5 Freq.	490 ms	2
3 DCV, 3 ACV, 2 $4w\Omega$	220 ms	5

OPERATING SPEED NOTES

- 1. With Display off, 1 power line cycle, autorange off, filter off, triggers halted. Display on may impact time by 3% worst case. To eliminate this impact press ENTER (hold) to lock out display from front panel.
- 2. Based on using 20V, 2kΩ, 200mA ranges.
- $3.\,\mathrm{Auto}$ Zero off, using $386\mathrm{SX}/16$ computer, average time for 1000 readings, byte order swapped, front panel disabled.
- 4. Typical times for 0.01 power line cycle, autorange off, Delay=0, 100 measurements into buffer.
- 5. Ratio and delta functions output one value for each pair of measurements.
- 6. Time to measure, evaluate limits, and set digital outputs are found by summing measurement time with limits calculation time.
- 7. Auto Zero off.
- 8. Based on 100kHz input frequency.

DELAY AND TIMER I

TIME STAMP

Resolution: 1us.

Accuracy: ±0.01% ±1us.

Maximum: 2,100,000.000 000 seconds (24 days, 20 hours).

DELAY TIME (Trigger edge to reading initiation)

Maximum: 999,999.999 seconds (11 days, 12 hours).

Resolution: 1ms. litter: ±1ms.

TIMER (Reading initiation to reading initiation)

Maximum: 999,999.999 seconds (11 days, 12 hours).

Resolution: 1ms. litter: +1ms.

NOTE: To find measurement speed, see each measurement section.

MAXIMUM INPUT LEVELS

	RATED INPUT ¹	OVERLOAD RECOVERY TIME	
HI to LO HI Sense to LO LO Sense to LO I Input to LO HI to Earth LO to Earth	±1100V pk ± 350V pk 250V rms ± 350V pk 250V rms 2A, ± 250V (fused) ±1600V ± 500V	< 900 ms < 900 ms < 900 ms — < 900 ms	

1. For voltages between other terminals, these ratings can be algebraically added.

IEEE-488 BUS IMPLEMENTATION

IMPLEMENTATION: IEEE-488.2. SCPI-1991.0.

MULTILINE COMMANDS: DCL, LLO, SDC, GET, GTL, UNT, UNL, SPE, SPD.

UNILINE COMMANDS: IFC. REN. EOI. SRQ. ATN.

INTERFACE COMMANDS: SH1, AH1, T5, TE0, L4, LE0, SR1, RL1, PP0, DC1,

DT1. C0. E1.

DIGITAL I/O

CONNECTOR TYPE: 8 pin "D" subminiature.

INPUT: One pin, TTL compatible.

OUTPUTS: Four pins. Open collector, 30V maximum pull-up voltage, 100mA maximum sink current, 10Ω output impedance.

CONTROL: Direct control by output or set real-time with limits.

GENERAL SPECIFICATIONS AND STANDARDS COMPLIANCE

POWER

Voltage: 90-134V and 180-250V, universal self-selecting.

Frequency: 50Hz, 60Hz, or 400Hz self-identifying.

Consumption: <55VA.

ENVIRONMENTAL

Operating Temperature: 0°C to 50 °C. Storage Temperature: -40 °C to 70 °C.

Humidity: 80% R.H., 0°C to 35°C, per MIL-T-28800E1 Para 4.5.5.1.2.

NORMAL CALIBRATION

Type: Software. No manual adjustments required.

Sources: 2 DC voltages (2V, 20V) and 2 resistances (19k and 1M). Different calibration source values are allowed. All other functions calibrated (adjusted) from these sources and a short circuit. No AC calibrator required for adjustment.

PHYSICAL

Case Dimensions: 90mm high \times 214mm wide \times 369mm deep (3½ in. \times 8½ in. × 14½ in.).

Working Dimensions: From front of case to rear including power cord and IEEE-488 connector: 15.0 inches.

Net Weight: <4.2kg (<9.2 lbs.). Shipping Weight: <9.1kg (<20lbs.).

STANDARDS

EMI/RFI: Conforms to VDE 0871B (per Vfg 1046/1984), IEC 801-2. Meets FCC part 15 Class B, CISPR-22 (EN55022).

Safety: Conforms to IEC348, CAN/CSA-C22.2. No. 231, MIL-T-28800E1. Designed to UL1244.

Reliability: MIL-T-28800E1.

Maintainability: MIL-T-28800E1.

MTTR: <90 minutes (includes disassembly and assembly, excludes recalibration). MTTR is Mean Time To Repair.

MTBF, Estimated: >75,000 hours (Bellcore method). MTBF is Mean Time Between Failure.

MTTC: <20 minutes for normal calibration. <6 minutes for AC self-calibration. MTTC is Mean Time To Calibrate.

Process: MIL-STD 45662A and BS5750.

ACCESSORIES SUPPLIED

The unit is shipped with line cord, high performance modular test leads, user's manual, option slot cover, and full calibration data. A personal computer startup package is available free.

Note 1: For MIL-T-28800E, applies to Type III, Class 5, Style E.

EXTENDED MEMORY / NON-VOLATILE MEMORY OPTIONS

DATA STORAGE

	SIZE	6½-Digit		SETUP S	SETUP STORAGE	
MODEL	(Bytes)	41/2-Digit	w/Time Stamp	Туре	Number	Type
2001	8k	2,027	404	volatile	1	non-volatile
2001/MEM1	32k	6,909	1,381	non-volatile	5	non-volatile
2001/MEM2	128k	29,908	5,980	non-volatile	10	non-volatile

These are the minimum sizes to expect.