FடபKE

5520A Multi-Product Calibrator

Extended Specifications

2005

```
FLUKEEI SS20A CMMUTO
```

(Measured Value)

```
```

m ------ 9/0.m

```
m ------ 9/0.m
MMeasured Value)
```

MMeasured Value)

```
anv \(\square^{-}-\square\)
7 - \(\cdot\) 요 ( )
\(\qquad\) 10 \(1 \cdot\)
\(\qquad\) 2
\(+\) 0 \(\cdot\)


\section*{5520A Specifications}

The following tables list the 5520A specifications. All specifications are valid after allowing a warm-up period of 30 minutes, or twice the time the 5520A has been turned off. (For example, if the 5520A has been turned off for 5 minutes, the warm-up period is 10 minutes.)
All specifications apply for the temperature and time period indicated. For temperatures outside of \(\mathrm{t}_{\text {cal }} \pm 5^{\circ} \mathrm{C}\) ( \(\mathrm{t}_{\text {cal }}\) is the ambient temperature when the 5520A was calibrated), the temperature coefficient as stated in the General Specifications must be applied.

The specifications also assume the Calibrator is zeroed every seven days or whenever the ambient temperature changes more than \(5^{\circ} \mathrm{C}\). The tightest ohms specifications are maintained with a zero cal every 12 hours within \(\pm 1^{\circ} \mathrm{C}\) of use.
Also see additional specifications later in this chapter for information on extended specifications for ac voltage and current. The dimensional outline for the 5520A Calibrator is shown in Figure A.


Figure A. 5520A Calibrator Dimensional Outline

\section*{General Specifications}
\begin{tabular}{|c|c|}
\hline Warmup Time & Twice the time since last warmed up, to a maximum of 30 minutes. \\
\hline Settling Time & Less than 5 seconds for all functions and ranges except as noted. \\
\hline Standard Interfaces & IEEE-488 (GPIB), RS-232 \\
\hline Temperature Performance & \begin{tabular}{l}
- Operating: \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\) \\
- Calibration (tcal): \(15^{\circ} \mathrm{C}\) to \(35^{\circ} \mathrm{C}\) \\
- Storage: \(-20^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}{ }^{[3]}\)
\end{tabular} \\
\hline Temperature Coefficient & Temperature Coefficient for temperatures outside tcal \(+5^{\circ} \mathrm{C}\) is \(0.1 \mathrm{X} /{ }^{\circ} \mathrm{C}\) of the 90 -day specification (or 1 -year, as applicable) per \({ }^{\circ} \mathrm{C}\). \\
\hline Relative Humidity \({ }^{[1]}\) & \begin{tabular}{l}
- Operating: \(<80 \%\) to \(30^{\circ} \mathrm{C},<70 \%\) to \(40^{\circ} \mathrm{C},<40 \%\) to \(50^{\circ} \mathrm{C}\) \\
- Storage: <95 \%, non-condensing
\end{tabular} \\
\hline Altitude & \begin{tabular}{l}
- Operating: 3,050 m (10,000 ft) maximum \\
- Non-operating: \(12,200 \mathrm{~m}(40,000 \mathrm{ft})\) maximum
\end{tabular} \\
\hline Safety & Complies with IEC 1010-1 (1992-1); ANSI/ISA-S82.01-1994; CAN/CSA-C22.2 No. 1010.1-92 \\
\hline Analog Low Isolation & 20 V \\
\hline EMC & Designed to comply with FCC Rules Part 15; VFG 243/1991. If used in areas with Electromagnetic fields of 1 to \(3 \mathrm{~V} / \mathrm{m}\), resistance outputs have a floor adder of 0.508 . Performance not specified above \(3 \mathrm{~V} / \mathrm{m}\). This instrument may be susceptible to electro-static discharge (ESD) from direct contact to the binding posts. Good static aware practices should be followed when handling this and other pieces of electronic equipment. \\
\hline Line Power \({ }^{[2]}\) & \begin{tabular}{l}
- Line Voltage (selectable): \(100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}\) \\
- Line Frequency: 47 to 63 Hz \\
- Line Voltage Variation: \(\pm 10\) \% about line voltage setting
\end{tabular} \\
\hline Power Consumption & 600 VA \\
\hline Dimensions & \begin{tabular}{l}
- Height: 17.8 cm (7 inches), standard rack increment, plus 1.5 cm ( 0.6 inch) for feet on bottom of unit; \\
- Width: 43.2 cm ( 17 inches), standard rack width \\
- Depth: 47.3 cm ( 18.6 inches) overall
\end{tabular} \\
\hline Weight (without options) & 22 kg (49 lb) \\
\hline Absolute Uncertainty Definition & The specifications include stability, temperature coefficient, linearity, line and load regulation, and the traceability of the external standards used for calibration. You do not need to add anything to determine the total specification for the temperature range indicated. \\
\hline Specification Confidence Interval & 99 \% \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
[1] After long periods of storage at high humidity, a drying out period (with the power on) of at least one week may be required. \\
[2] For optimal performance at full dual outputs (e.g. \(1000 \mathrm{~V}, 20 \mathrm{~A}\) ) choose a line voltage setting that is \(\pm 7.5 \%\) from nominal. \\
[3] The DC Current ranges 0 to 1.09999 A and 1.1 to 2.99999 A are sensitive to storage temperatures above \(50^{\circ} \mathrm{C}\). If the 5520 A is stored above \(50^{\circ} \mathrm{C}\) for greater than 30 minutes, these ranges must be re-calibrated. Otherwise, the 90 day and 1 year uncertainties of these ranges double.
\end{tabular}} \\
\hline
\end{tabular}

\section*{Electrical Specifications}

\section*{DC Voltage Specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Range} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Absolute Uncertainty, tcal } \\
\pm 5^{\circ} \mathrm{C} \\
\pm(\mathrm{ppm} \text { of output }+\mu \mathrm{V}) \\
\hline
\end{gathered}
\]} & Stability & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Resolution } \\
& \mu \mathrm{V}
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max \\
Burden \({ }^{[1]}\)
\end{tabular}} \\
\hline & 90 days & 1 year & \[
\begin{gathered}
24 \text { hours, } \pm 1^{\circ} \mathrm{C} \\
\pm(\mathrm{ppm} \text { output }+\mu \mathrm{V})
\end{gathered}
\] & & \\
\hline 0 to 329.9999 mV & \(15+1\) & \(20+1\) & \(3+1\) & 0.1 & \(50 \Omega\) \\
\hline 0 to 3.299999 V & \(9+2\) & \(11+2\) & \(2+1.5\) & 1 & 10 mA \\
\hline 0 to 32.99999 V & \(10+20\) & \(12+20\) & \(2+15\) & 10 & 10 mA \\
\hline 30 to 329.9999 V & \(15+150\) & \(18+150\) & \(2.5+100\) & 100 & 5 mA \\
\hline 100 to 1000.000 V & \(15+1500\) & \(18+1500\) & \(3+300\) & 1000 & 5 mA \\
\hline \multicolumn{6}{|c|}{Auxiliary Output (dual output mode only) \({ }^{[2]}\)} \\
\hline 0 to 329.999 mV & \(300+350\) & \(400+350\) & \(30+100\) & 1 & 5 mA \\
\hline 0.33 to 3.29999 V & \(300+350\) & \(400+350\) & \(30+100\) & 10 & 5 mA \\
\hline 3.3 to 7 V & \(300+350\) & \(400+350\) & \(30+100\) & 100 & 5 mA \\
\hline \multicolumn{6}{|c|}{TC Simulate and Measure in Linear \(10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) and \(1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\) modes \({ }^{[3]}\)} \\
\hline 0 to 329.999 mV & \(40+3\) & \(50+3\) & \(5+2\) & 0.1 & \(10 \Omega\) \\
\hline
\end{tabular}
[1] Remote sensing is not provided. Output resistance is \(<5 \mathrm{~m} \Omega\) for outputs \(\geq 0.33 \mathrm{~V}\). The AUX output has an output resistance of \(<1 \Omega\). TC simulation has an output impedance of \(10 \Omega \pm 1 \Omega\).
[2] Two channels of dc voltage output are provided.
[3] TC simulating and measuring are not specified for operation in electromagnetic fields above \(0.4 \mathrm{~V} / \mathrm{m}\).
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Range } & \multicolumn{2}{|c|}{ Noise } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Bandwidth 0.1 Hz to \\
\(\mathbf{1 0 ~ H z ~ p - p}\) \\
\(\pm(\) ppm output + floor)
\end{tabular} & Bandwidth \(\mathbf{1 0 ~ H z ~ t o ~} \mathbf{1 0 ~ k H z ~ r m s ~}\) \\
\hline 0 to 329.9999 mV & \(0+1 \mu \mathrm{~V}\) & \(6 \mu \mathrm{~V}\) \\
\hline 0 to 3.299999 V & \(0+10 \mu \mathrm{~V}\) & \(60 \mu \mathrm{~V}\) \\
\hline 0 to 32.99999 V & \(0+100 \mu \mathrm{~V}\) & \(600 \mu \mathrm{~V}\) \\
\hline 30 to 329.9999 V & \(10+1 \mathrm{mV}\) & 20 mV \\
\hline 100 to 1000.000 V & \(10+5 \mathrm{mV}\) & 20 mV \\
\hline \multicolumn{3}{|c|}{ Auxiliary 0utput (dual output mode only) \({ }^{[1]}\)} \\
\hline 0 to 329.999 mV & \(0+5 \mu \mathrm{~V}\) & \(20 \mu \mathrm{~V}\) \\
\hline 0.33 to 3.29999 V & \(0+20 \mu \mathrm{~V}\) & \(200 \mu \mathrm{~V}\) \\
\hline 3.3 to 7 V & \(0+100 \mu \mathrm{~V}\) & \(1000 \mu \mathrm{~V}\) \\
\hline\([1] \quad\) Two channels of dc voltage output are provided. & \\
\hline
\end{tabular}

\section*{DC Current Specifications}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Range} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Absolute Uncertainty, } \\
\text { tcal } \pm 5^{\circ} \mathrm{C} \\
\pm(\mathrm{ppm} \text { of output }+\mu A)
\end{gathered}
\]} & \multirow[t]{2}{*}{Resolution} & \multirow[t]{2}{*}{Max Compliance Voltage V} & \multirow[t]{2}{*}{Max Inductive Load mH} \\
\hline & 90 days & 1 year & & & \\
\hline 0 to \(329.999 \mu \mathrm{~A}\) & \(120+0.02\) & \(150+0.02\) & 1 nA & 10 & \multirow{8}{*}{400} \\
\hline 0 to 3.29999 mA & \(80+0.05\) & \(100+0.05\) & \(0.01 \mu \mathrm{~A}\) & 10 & \\
\hline 0 to 32.9999 mA & \(80+0.25\) & \(100+0.25\) & \(0.1 \mu \mathrm{~A}\) & 7 & \\
\hline 0 to 329.999 mA & \(80+2.5\) & \(100+2.5\) & \(1 \mu \mathrm{~A}\) & 7 & \\
\hline 0 to 1.09999 A & \(160+40\) & \(200+40\) & \(10 \mu \mathrm{~A}\) & 6 & \\
\hline 1.1 to 2.99999 A & \(300+40\) & \(380+40\) & \(10 \mu \mathrm{~A}\) & 6 & \\
\hline \begin{tabular}{l}
0 to 10.9999 A \\
(20 A Range)
\end{tabular} & \(380+500\) & \(500+500\) & \(100 \mu \mathrm{~A}\) & 4 & \\
\hline 11 to \(20.5 \mathrm{~A}^{[1]}\) & \(800+750{ }^{[2]}\) & \(1000+750^{[2]}\) & \(100 \mu \mathrm{~A}\) & 4 & \\
\hline
\end{tabular}
[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents > 11 A, see Figure B. The current may be provided 60-T-I minutes any 60 minute period where T is the temperature in \({ }^{\circ} \mathrm{C}\) (room temperature is about \(23^{\circ} \mathrm{C}\) ) and I is the output current in Amps. For example, 17 A , at \(23^{\circ} \mathrm{C}\) could be provided for 60-17-23 \(=20\) minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure B is achieved only after the 5520A is outputting currents \(<5 \mathrm{~A}\) for the "off" period first.
[2] Specifications apply within two minutes of selecting operate.
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Range } & \multicolumn{2}{|c|}{ Noise } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Bandwidth \\
\(\mathbf{0 . 1 ~ H z ~ t o ~} \mathbf{1 0 ~ H z}\) \\
p-p
\end{tabular} & \begin{tabular}{c} 
Bandwidth \\
\(\mathbf{1 0 ~ H z ~ t o ~} \mathbf{1 0 ~ k H z}\) \\
\(\mathbf{r m s}\)
\end{tabular} \\
\hline 0 to \(329.999 \mu \mathrm{~A}\) & 2 nA & 20 nA \\
\hline 0 to 3.29999 mA & 20 nA & 200 nA \\
\hline 0 to 32.9999 mA & 200 nA & \(2.0 \mu \mathrm{~A}\) \\
\hline 0 to 329.999 mA & 2000 nA & \(20 \mu \mathrm{~A}\) \\
\hline 0 to 2.99999 A & \(20 \mu \mathrm{~A}\) & 1 mA \\
\hline 0 to 20.5 A & \(200 \mu \mathrm{~A}\) & 10 mA \\
\hline
\end{tabular}


Figure B. Allowable Duration of Current > 11 A

\section*{Resistance Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Range \({ }^{[1]}\)} & \multicolumn{4}{|c|}{Absolute Uncertainty, tcal \(\pm 5^{\circ} \mathrm{C}\) \(\pm\) (ppm of output + floor)} & \multirow{3}{*}{\[
\begin{gathered}
\text { Resolution } \\
\Omega
\end{gathered}
\]} & \multirow{3}{*}{Allowable Current \({ }^{[3]}\)} \\
\hline & \multicolumn{2}{|l|}{ppm of output} & \multicolumn{2}{|l|}{Floor
Time \& temp since ohms zero cal} & & \\
\hline & 90 days & 1 year & \(12 \mathrm{hrs} \pm 1^{\circ} \mathrm{C}\) & 7 days \(\pm 5{ }^{\circ} \mathrm{C}\) & & \\
\hline 0 to \(10.9999 \Omega\) & 35 & 40 & 0.001 & 0.01 & 0.0001 & 1 to 125 mA \\
\hline \[
\begin{gathered}
11 \mathrm{to} \\
32.9999 \Omega \\
\hline
\end{gathered}
\] & 25 & 30 & 0.0015 & 0.015 & 0.0001 & 1 to 125 mA \\
\hline \[
\begin{gathered}
33 \mathrm{to} \\
109.9999 \Omega
\end{gathered}
\] & 22 & 28 & 0.0014 & 0.015 & 0.0001 & 1 to 70 mA \\
\hline \[
\begin{gathered}
110 \mathrm{to} \\
329.9999 \Omega \\
\hline
\end{gathered}
\] & 22 & 28 & 0.002 & 0.02 & 0.0001 & 1 to 40 mA \\
\hline \[
\begin{gathered}
330 \Omega \mathrm{to} \\
1.099999 \mathrm{k} \Omega \\
\hline
\end{gathered}
\] & 22 & 28 & 0.002 & 0.02 & 0.001 & 1 to 18 mA \\
\hline \[
\begin{array}{r}
1.1 \mathrm{to} \\
3.299999 \mathrm{k} \Omega \\
\hline
\end{array}
\] & 22 & 28 & 0.02 & 0.2 & 0.001 & \(100 \mu \mathrm{~A}\) to 5 mA \\
\hline \[
\begin{gathered}
3.3 \mathrm{to} \\
10.99999 \mathrm{k} \Omega \\
\hline
\end{gathered}
\] & 22 & 28 & 0.02 & 0.1 & 0.01 & \(100 \mu \mathrm{~A}\) to 1.8 mA \\
\hline \[
\begin{gathered}
11 \mathrm{to} \\
32.99999 \Omega
\end{gathered}
\] & 22 & 28 & 0.2 & 1 & 0.01 & \(10 \mu \mathrm{~A}\) to 0.5 mA \\
\hline \[
\begin{gathered}
33 \mathrm{to} \\
109.9999 \mathrm{k} \Omega \\
\hline
\end{gathered}
\] & 22 & 28 & 0.2 & 1 & 0.1 & \(10 \mu A\) to 0.18 mA \\
\hline \[
\begin{gathered}
110 \mathrm{to} \\
329.9999 \mathrm{k} \Omega
\end{gathered}
\] & 25 & 32 & 2 & 10 & 0.1 & \(1 \mu A\) to 0.05 mA \\
\hline \[
\begin{gathered}
330 \mathrm{k} \Omega \mathrm{to} \\
1.099999 \mathrm{M} \Omega \\
\hline
\end{gathered}
\] & 25 & 32 & 2 & 10 & 1 & \(1 \mu A\) to 0.018 mA \\
\hline \[
\begin{gathered}
1.1 \mathrm{to} \\
3.299999 \mathrm{M} \Omega \\
\hline
\end{gathered}
\] & 40 & 60 & 30 & 150 & 1 & 250 nA to \(5 \mu \mathrm{~A}\) \\
\hline \[
\begin{gathered}
3.3 \mathrm{to} \\
10.99999 \mathrm{M} \Omega \\
\hline
\end{gathered}
\] & 110 & 130 & 50 & 250 & 10 & 250 nA to \(1.8 \mu \mathrm{~A}\) \\
\hline \[
\begin{gathered}
11 \mathrm{to} \\
\hline 32.99999 \mathrm{M} \Omega \\
\hline
\end{gathered}
\] & 200 & 250 & 2500 & 2500 & 10 & 25 to 500 nA \\
\hline \[
\begin{gathered}
33 \mathrm{to} \\
109.9999 \mathrm{M} \Omega \\
\hline
\end{gathered}
\] & 400 & 500 & 3000 & 3000 & 100 & 25 to 180 nA \\
\hline \[
\begin{gathered}
110 \mathrm{to} \\
329.9999 \mathrm{M} \Omega \\
\hline
\end{gathered}
\] & 2500 & 3000 & 100000 & 100000 & 1000 & 2.5 to 50 nA \\
\hline \[
\begin{gathered}
330 \mathrm{to} \\
1100 \mathrm{M} \Omega \\
\hline
\end{gathered}
\] & 12000 & 15000 & 500000 & 500000 & 10000 & 1 to 13 nA \\
\hline
\end{tabular}
[1] Continuously variable from \(0 \Omega\) to \(1.1 \mathrm{G} \Omega\).
[2] Applies for a 4-WIRE compensation only. For 2-WIRE and 2-WIRE COMP, add \(5 \mu \mathrm{~V}\) per Amp of stimulus current to the floor specification. For example, in 2-WIRE mode, at \(1 \mathrm{k} \Omega\), the floor specification within 12 hours of an ohms zero cal for a measurement current of 1 mA is: \(0.002 \Omega+5 \mu \mathrm{~V} / 1 \mathrm{ma}=(0.002+0.005) \Omega=0.007 \Omega\)
[3] For currents lower than shown, the floor adder increases by: Floor (new) = Floor (old) X Imin/Iactual.
For example, a \(50 \mu \mathrm{~A}\) stimulus measuring \(100 \Omega\), has a floor specification of: \(0.0014 \Omega \times 1 \mathrm{~mA} / 50 \mu \mathrm{~A}=0.028 \Omega\), assuming an ohms zero cal within 12 hours.

\section*{AC Voltage (Sine Wave) Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{NORMAL (Normal Output)} \\
\hline \multirow[t]{2}{*}{Range} & \multirow[t]{2}{*}{Frequency} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Absolute Uncertainty, } \\
& \text { tcal } \pm 5^{\circ} \mathrm{C} \\
& \pm(\mathrm{ppm} \text { of output }+\mu \mathrm{V}) \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{Resolution} & \multirow[t]{2}{*}{Max Burden} & \multirow[t]{2}{*}{\begin{tabular}{|c} 
Max Distortion and \\
Noise \\
10 Hz to 5 MHz \\
Bandwidth \\
\(\pm(\%\) output + floor \()\) \\
\hline 0
\end{tabular}} \\
\hline & & 90 days & 1 year & & & \\
\hline \multirow{6}{*}{\[
\begin{gathered}
1.0 \mathrm{to} \\
32.999 \mathrm{mV}
\end{gathered}
\]} & 10 to 45 Hz & \(600+6\) & \(800+6\) & \multirow{6}{*}{\(1 \mu \mathrm{~V}\)} & \multirow{6}{*}{\(50 \Omega\)} & \(0.15+90 \mu \mathrm{~V}\) \\
\hline & 45 Hz to 10 kHz & \(120+6\) & \(150+6\) & & & \(0.035+90 \mu \mathrm{~V}\) \\
\hline & 10 to 20 kHz & \(160+6\) & \(200+6\) & & & \(0.06+90 \mu \mathrm{~V}\) \\
\hline & 20 to 50 kHz & \(800+6\) & \(1000+6\) & & & \(0.15+90 \mu \mathrm{~V}\) \\
\hline & 50 to 100 kHz & \(3000+12\) & \(3500+12\) & & & \(0.25+90 \mu \mathrm{~V}\) \\
\hline & 100 to 500 kHz & \(6000+50\) & \(8000+50\) & & & \(0.3+90 \mu \mathrm{~V}^{[1]}\) \\
\hline \multirow{6}{*}{\[
\begin{gathered}
33 \mathrm{to} \\
329.999 \mathrm{mV}
\end{gathered}
\]} & 10 to 45 Hz & \(250+8\) & \(300+8\) & \multirow{6}{*}{\(1 \mu \mathrm{~V}\)} & \multirow{6}{*}{\(50 \Omega\)} & \(0.15+90 \mu \mathrm{~V}\) \\
\hline & 45 Hz to 10 kHz & \(140+8\) & \(145+8\) & & & \(0.035+90 \mu \mathrm{~V}\) \\
\hline & 10 to 20 kHz & \(150+8\) & \(160+8\) & & & \(0.06+90 \mu \mathrm{~V}\) \\
\hline & 20 to 50 kHz & \(300+8\) & \(350+8\) & & & \(0.15+90 \mu \mathrm{~V}\) \\
\hline & 50 to 100 kHz & \(600+32\) & \(800+32\) & & & \(0.20+90 \mu \mathrm{~V}\) \\
\hline & 100 to 500 kHz & \(1600+70\) & \(2000+70\) & & & \(0.20+90 \mu \mathrm{~V}^{[1]}\) \\
\hline \multirow{6}{*}{\[
\begin{gathered}
0.33 \mathrm{to} \\
3.29999 \mathrm{~V}
\end{gathered}
\]} & 10 to 45 Hz & \(250+50\) & \(300+50\) & \multirow{6}{*}{\(10 \mu \mathrm{~V}\)} & \multirow{6}{*}{10 mA} & \(0.15+200 \mu \mathrm{~V}\) \\
\hline & 45 Hz to 10 kHz & \(140+60\) & \(150+60\) & & & \(0.035+200 \mu \mathrm{~V}\) \\
\hline & 10 to 20 kHz & \(160+60\) & \(190+60\) & & & \(0.06+200 \mu \mathrm{~V}\) \\
\hline & 20 to 50 kHz & \(250+50\) & \(300+50\) & & & \(0.15+200 \mu \mathrm{~V}\) \\
\hline & 50 to 100 kHz & \(550+125\) & \(700+125\) & & & \(0.20+200 \mu \mathrm{~V}\) \\
\hline & 100 to 500 kHz & \(2000+600\) & \(2400+600\) & & & \(0.20+200 \mu V^{[1]}\) \\
\hline \multirow{5}{*}{\[
\begin{array}{r}
3.3 \mathrm{to} \\
32.9999 \mathrm{~V}
\end{array}
\]} & 10 to 45 Hz & \(250+650\) & \(300+650\) & \multirow{5}{*}{\(100 \mu \mathrm{~V}\)} & \multirow{5}{*}{10 mA} & \(0.15+2 \mathrm{mV}\) \\
\hline & 45 Hz to 10 kHz & \(125+600\) & \(150+600\) & & & \(0.035+2 \mathrm{mV}\) \\
\hline & 10 to 20 kHz & \(220+600\) & \(240+600\) & & & \(0.08+2 \mathrm{mV}\) \\
\hline & 20 to 50 kHz & \(300+600\) & \(350+600\) & & & \(0.2+2 \mathrm{mV}\) \\
\hline & 50 to 100 kHz & \(750+1600\) & \(900+1600\) & & & \(0.5+2 \mathrm{mV}\) \\
\hline \multirow{5}{*}{\[
\begin{array}{r}
33 \mathrm{to} \\
329.999 \mathrm{~V}
\end{array}
\]} & 45 Hz to 1 kHz & \(150+2000\) & \(190+2000\) & \multirow{5}{*}{1 mV} & \multirow{5}{*}{5 mA, except 20 mA for 45 to 65 Hz} & \(0.15+10 \mathrm{mV}\) \\
\hline & 1 to 10 kHz & \(160+6000\) & \(200+6000\) & & & \(0.05+10 \mathrm{mV}\) \\
\hline & 10 to 20 kHz & \(220+6000\) & \(250+6000\) & & & \(0.6+10 \mathrm{mV}\) \\
\hline & 20 to 50 kHz & \(240+6000\) & \(300+6000\) & & & \(0.8+10 \mathrm{mV}\) \\
\hline & 50 to 100 kHz & \(1600+50000\) & \[
\begin{array}{r}
2000+ \\
50000 \\
\hline
\end{array}
\] & & & \(1.0+10 \mathrm{mV}\) \\
\hline \multirow[b]{3}{*}{\[
\begin{aligned}
& 330 \text { to } \\
& 1020 \mathrm{~V}
\end{aligned}
\]} & 45 Hz to 1 kHz & \(250+10000\) & \(300+10000\) & \multirow{3}{*}{10 mV} & \multirow[t]{3}{*}{\[
\begin{array}{|c|}
\hline 2 \mathrm{~mA}, \text { except } \\
6 \mathrm{~mA} \text { for } 45 \\
\text { to } 65 \mathrm{~Hz} \\
\hline
\end{array}
\]} & \(0.15+30 \mathrm{mV}\) \\
\hline & 1 to 5 kHz & \(200+10000\) & \(250+10000\) & & & \(0.07+30 \mathrm{mV}\) \\
\hline & 5 to 10 kHz & \(250+10000\) & \(300+10000\) & & & \(0.07+30 \mathrm{mV}\) \\
\hline
\end{tabular}
[1] Max Distortion for 100 to 200 kHz . For 200 to 500 kHz , the maximum distortion is \(0.9 \%\) of output + floor as shown.
Note
Remote sensing is not provided. Output resistance is • \(5 \mathrm{~m} \Omega\) for outputs \(\geq 0.33 \mathrm{~V}\). The maximum load capacitance is 500 pF , subject to the maximum burden current limits.

\section*{AC Voltage (Sine Wave) Specifications (cont.)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{AUX (Auxiliary Output) [dual output mode only] \({ }^{[1]}\)} \\
\hline \multirow[t]{2}{*}{Range} & \multirow[t]{2}{*}{Frequency} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Absolute Uncertainty, } \\
\text { tcal } \pm 5^{\circ} \mathrm{C} \\
\pm(\% \text { of output }+\mu \mathrm{V}) \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Resolution} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max \\
Burden
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\hline \text { Max Distortion and } \\
\text { Noise } \\
10 \mathrm{~Hz} \text { to } 100 \mathrm{kHz} \\
\text { Bandwidth } \\
\pm(\% \text { output + floor }) \\
\hline
\end{array}
\]} \\
\hline & & 90 days & 1 year & & & \\
\hline \multirow{6}{*}{\[
\begin{gathered}
10 \text { to } \\
329.999 \mathrm{mV}
\end{gathered}
\]} & 10 to 20 Hz & \(0.15+370\) & \(0.2+370\) & \multirow{6}{*}{\(1 \mu \mathrm{~V}\)} & \multirow{6}{*}{5 mA} & \(0.2+200 \mu \mathrm{~V}\) \\
\hline & 20 to 45 Hz & \(0.08+370\) & \(0.1+370\) & & & \(0.06+200 \mu \mathrm{~V}\) \\
\hline & 45 Hz to 1 kHz & \(0.08+370\) & \(0.1+370\) & & & \(0.08+200 \mu \mathrm{~V}\) \\
\hline & 1 to 5 kHz & \(0.15+450\) & \(0.2+450\) & & & \(0.3+200 \mu \mathrm{~V}\) \\
\hline & 5 to 10 kHz & \(0.3+450\) & \(0.4+450\) & & & \(0.6+200 \mu \mathrm{~V}\) \\
\hline & 10 Hz to 30 kHz & \(4.0+900\) & \(5.0+900\) & & & \(1+200 \mu \mathrm{~V}\) \\
\hline \multirow{6}{*}{\[
\begin{gathered}
0.33 \text { to } \\
3.29999 \mathrm{~V}
\end{gathered}
\]} & 10 to 20 Hz & \(0.15+450\) & \(0.2+450\) & \multirow{6}{*}{\(10 \mu \mathrm{~V}\)} & \multirow{6}{*}{5 mA} & \(0.2+200 \mu \mathrm{~V}\) \\
\hline & 20 to 45 Hz & \(0.08+450\) & \(0.1+450\) & & & \(0.06+200 \mu \mathrm{~V}\) \\
\hline & 45 Hz to 1 kHz & \(0.07+450\) & \(0.09+450\) & & & \(0.08+200 \mu \mathrm{~V}\) \\
\hline & 1 to 5 kHz & \(0.15+1400\) & \(0.2+1400\) & & & \(0.3+200 \mu \mathrm{~V}\) \\
\hline & 5 to 10 kHz & \(0.3+1400\) & \(0.4+1400\) & & & \(0.6+200 \mu \mathrm{~V}\) \\
\hline & 10 to 30 kHz & \(4.0+2800\) & \(5.0+2800\) & & & \(1+200 \mu \mathrm{~V}\) \\
\hline \multirow{5}{*}{3.3 to 5 V} & 10 to 20 Hz & \(0.15+450\) & \(0.2+450\) & \multirow{5}{*}{\(100 \mu \mathrm{~V}\)} & \multirow{5}{*}{5 mA} & \(0.2+200 \mu \mathrm{~V}\) \\
\hline & 20 to 45 Hz & \(0.08+450\) & \(0.1+450\) & & & \(0.06+200 \mu \mathrm{~V}\) \\
\hline & 45 Hz to 1 kHz & \(0.07+450\) & \(0.09+450\) & & & \(0.08+200 \mu \mathrm{~V}\) \\
\hline & 1 to 5 kHz & \(0.15+1400\) & \(0.2+1400\) & & & \(0.3+200 \mu \mathrm{~V}\) \\
\hline & 5 to 10 kHz & \(0.3+1400\) & \(0.4+1400\) & & & \(0.6+200 \mu \mathrm{~V}\) \\
\hline
\end{tabular}
[1] There are two channels of voltage output. The maximum frequency of the dual output is 30 kHz .
Note
Remote sensing is not provided. The AUX output resistance is < \(1 \Omega\). The maximum load capacitance is 500 pF , subject to the maximum burden current limits.

\section*{AC Current (Sine Wave) Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{LCOMP off} \\
\hline \multirow[t]{2}{*}{Range} & \multirow[t]{2}{*}{Frequency} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Absolute Uncertainty, } \\
\text { tcal } \pm 5^{\circ} \mathrm{C} \\
\pm(\% \text { of output }+\mu A)
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Compliance } \\
& \text { adder } \\
& \pm(\mu A / V)
\end{aligned}
\]} & \multirow[t]{2}{*}{Max Distortion \& Noise 10 Hz to 100 kHz BW \(\pm\) (\% output + floor)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Max \\
Inductive \\
Load \(\mu \mathrm{H}\)
\end{tabular}} \\
\hline & & 90 days & 1 year & & & \\
\hline \multirow{6}{*}{\[
\begin{gathered}
29.00 \text { to } \\
329.99 \mu \mathrm{~A}
\end{gathered}
\]} & 10 to 20 Hz & \(0.16+0.1\) & \(0.2+0.1\) & 0.05 & \(0.15+0.5 \mu \mathrm{~A}\) & \multirow{6}{*}{200} \\
\hline & 20 to 45 Hz & \(0.12+0.1\) & \(0.15+0.1\) & 0.05 & \(0.1+0.5 \mu \mathrm{~A}\) & \\
\hline & 45 Hz to 1 kHz & \(0.1+0.1\) & \(0.125+0.1\) & 0.05 & \(0.05+0.5 \mu \mathrm{~A}\) & \\
\hline & 1 to 5 kHz & \(0.25+0.15\) & \(0.3+0.15\) & 1.5 & \(0.5+0.5 \mu \mathrm{~A}\) & \\
\hline & 5 to 10 kHz & \(0.6+0.2\) & \(0.8+0.2\) & 1.5 & \(1.0+0.5 \mu \mathrm{~A}\) & \\
\hline & 10 to 30 kHz & \(1.2+0.4\) & \(1.6+0.4\) & 10 & \(1.2+0.5 \mu \mathrm{~A}\) & \\
\hline \multirow{6}{*}{\[
\begin{gathered}
0.33 \mathrm{to} \\
3.2999 \mathrm{~mA}
\end{gathered}
\]} & 10 to 20 Hz & \(0.16+0.15\) & \(0.2+0.15\) & 0.05 & \(0.15+1.5 \mu \mathrm{~A}\) & \multirow{6}{*}{200} \\
\hline & 20 to 45 Hz & \(0.1+0.15\) & \(0.125+0.15\) & 0.05 & \(0.06+1.5 \mu \mathrm{~A}\) & \\
\hline & 45 Hz to 1 kHz & \(0.08+0.15\) & \(0.1+0.15\) & 0.05 & \(0.02+1.5 \mu \mathrm{~A}\) & \\
\hline & 1 to 5 kHz & \(0.16+0.2\) & \(0.2+0.2\) & 1.5 & \(0.5+1.5 \mu \mathrm{~A}\) & \\
\hline & 5 to 10 kHz & \(0.4+0.3\) & \(0.5+0.3\) & 1.5 & \(1.0+1.5 \mu \mathrm{~A}\) & \\
\hline & 10 to 30 kHz & \(0.8+0.6\) & \(1.0+0.6\) & 10 & \(1.2+0.5 \mu \mathrm{~A}\) & \\
\hline \multirow{6}{*}{\[
\begin{gathered}
3.3 \mathrm{to} \\
32.999 \mathrm{~mA}
\end{gathered}
\]} & 10 to 20 Hz & \(0.15+2\) & \(0.18+2\) & 0.05 & \(0.15+5 \mu \mathrm{~A}\) & \multirow{6}{*}{50} \\
\hline & 20 to 45 Hz & \(0.075+2\) & \(0.09+2\) & 0.05 & \(0.05+5 \mu \mathrm{~A}\) & \\
\hline & 45 Hz to 1 kHz & \(0.035+2\) & \(0.04+2\) & 0.05 & \(0.07+5 \mu \mathrm{~A}\) & \\
\hline & 1 to 5 kHz & \(0.065+2\) & \(0.08+2\) & 1.5 & \(0.3+5 \mu \mathrm{~A}\) & \\
\hline & 5 to 10 kHz & \(0.16+3\) & \(0.2+3\) & 1.5 & \(0.7+5 \mu \mathrm{~A}\) & \\
\hline & 10 to 30 kHz & \(0.32+4\) & \(0.4+4\) & 10 & \(1.0+0.5 \mu \mathrm{~A}\) & \\
\hline \multirow{6}{*}{\[
\begin{gathered}
33 \mathrm{to} \\
329.99 \mathrm{~mA}
\end{gathered}
\]} & 10 to 20 Hz & \(0.15+20\) & \(0.18+20\) & 0.05 & \(0.15+50 \mu \mathrm{~A}\) & \multirow{6}{*}{50} \\
\hline & 20 to 45 Hz & \(0.075+20\) & \(0.09+20\) & 0.05 & \(0.05+50 \mu \mathrm{~A}\) & \\
\hline & 45 Hz to 1 kHz & \(0.035+20\) & \(0.04+20\) & 0.05 & \(0.02+50 \mu \mathrm{~A}\) & \\
\hline & 1 to 5 kHz & \(0.08+50\) & \(0.10+50\) & 1.5 & \(0.03+50 \mu \mathrm{~A}\) & \\
\hline & 5 to 10 kHz & \(0.16+100\) & \(0.2+100\) & 1.5 & \(0.1+50 \mu \mathrm{~A}\) & \\
\hline & 10 to 30 kHz & \(0.32+200\) & \(0.4+200\) & 10 & \(0.6+50 \mu \mathrm{~A}\) & \\
\hline \multirow{4}{*}{\[
\begin{gathered}
0.33 \text { to } \\
1.09999 \mathrm{~A}
\end{gathered}
\]} & 10 to 45 Hz & \(0.15+100\) & \(0.18+100\) & & \(0.2+500 \mu \mathrm{~A}\) & \multirow{4}{*}{2.5} \\
\hline & 45 Hz to 1 kHz & \(0.036+100\) & \(0.05+100\) & & \(0.07+500 \mu \mathrm{~A}\) & \\
\hline & 1 to 5 kHz & \(0.5+1000\) & \(0.6+1000\) & \({ }^{\text {[2] }}\) & \(1+500 \mu \mathrm{~A}\) & \\
\hline & 5 to 10 kHz & \(2.0+5000\) & \(2.5+5000\) & [3] & \(2+500 \mu \mathrm{~A}\) & \\
\hline \multirow{4}{*}{\[
\begin{gathered}
1.1 \text { to } \\
2.99999 \mathrm{~A}
\end{gathered}
\]} & 10 to 45 Hz & \(0.15+100\) & \(0.18+100\) & & \(0.2+500 \mu \mathrm{~A}\) & \multirow{4}{*}{2.5} \\
\hline & 45 Hz to 1 kHz & \(0.05+100\) & \(0.06+100\) & & \(0.07+500 \mu \mathrm{~A}\) & \\
\hline & 1 to 5 kHz & \(0.5+1000\) & \(0.6+1000\) & \({ }^{[2]}\) & \(1+500 \mu \mathrm{~A}\) & \\
\hline & 5 to 10 kHz & \(2.0+5000\) & \(2.5+5000\) & [3] & \(2+500 \mu \mathrm{~A}\) & \\
\hline \multirow[b]{3}{*}{\[
\begin{gathered}
3 \text { to } \\
10.9999 \mathrm{~A}
\end{gathered}
\]} & 45 to 100 Hz & 0.05 + 2000 & 0.06+2000 & & \(0.2+3 \mathrm{~mA}\) & \multirow{3}{*}{1} \\
\hline & 100 Hz to 1 kHz & 0.08+2000 & \(0.10+2000\) & & \(0.1+3 \mathrm{~mA}\) & \\
\hline & 1 to 5 kHz & \(2.5+2000\) & \(3.0+2000\) & & \(0.8+3 \mathrm{~mA}\) & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
11 \mathrm{to} \\
20.5 \mathrm{~A}^{[1]}
\end{gathered}
\]} & 45 to 100 Hz & \(0.1+5000\) & 0.12+5000 & & \(0.2+3 \mathrm{~mA}\) & \multirow{3}{*}{1} \\
\hline & 100 Hz to 1 kHz & \(0.13+5000\) & 0.15+5000 & & \(0.1+3 \mathrm{~mA}\) & \\
\hline & 1 to 5 kHz & \(2.5+5000\) & \(3.0+5000\) & & \(0.8+3 \mathrm{~mA}\) & \\
\hline
\end{tabular}
[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents \(>11 \mathrm{~A}\), see Figure B. The current may be provided 60-T-I minutes any 60 minute period where T is the temperature in \({ }^{\circ} \mathrm{C}\) (room temperature is about \(23^{\circ} \mathrm{C}\) ) and I is the output current in Amps. For example, 17 A , at \(23^{\circ} \mathrm{C}\) could be provided for 60-17-23 \(=20\) minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure B is achieved only after the 5520A is outputting currents \(<5 \mathrm{~A}\) for the "off" period first.
[2] For compliance voltages greater than 1 V , add \(1 \mathrm{~mA} / \mathrm{V}\) to the floor specification from 1 to 5 kHz .
[3] For compliance voltages greater than 1 V , add \(5 \mathrm{~mA} / \mathrm{V}\) to the floor specification from 5 to 10 kHz

\section*{AC Current (Sine Wave) Specifications (cont.)}

[1] Duty Cycle: Currents < 11 A may be provided continuously. For currents > 11 A , see Figure B. The current may be provided 60-T-I minutes any 60 minute period where T is the temperature in \({ }^{\circ} \mathrm{C}\) (room temperature is about \(23^{\circ} \mathrm{C}\) ) and I is the output current in Amps. For example, 17 A , at \(23^{\circ} \mathrm{C}\) could be provided for 60-17-23 \(=20\) minutes each hour. When the 5520A is outputting currents between 5 and 11 amps for long periods, the internal self-heating reduces the duty cycle. Under those conditions, the allowable "on" time indicated by the formula and Figure B is achieved only after the 5520A is outputting currents < 5 A for the "off" period first.
[2] For currents \(>11\) A, Floor specification is \(4000 \mu \mathrm{~A}\) within 30 seconds of selecting operate. For operating times \(>30\) seconds, the floor specification is \(2000 \mu \mathrm{~A}\).
[3] For currents \(>11\) A, Floor specification is \(1000 \mu \mathrm{~A}\) within 30 seconds of selecting operate. For operating times \(>30\) seconds, the floor specification is \(5000 \mu \mathrm{~A}\).
[4] Subject to compliance voltages limits.
\begin{tabular}{|c|c|c|}
\hline Range & Resolution \(\mu \mathbf{A}\) & Max Compliance Voltage V rms \({ }^{[1]}\) \\
\hline 0.029 to 0.32999 mA & 0.01 & 7 \\
\hline 0.33 to 3.29999 mA & 0.01 & 7 \\
\hline 3.3 to 32.9999 mA & 0.1 & 5 \\
\hline 33 to 329.999 mA & 1 & 5 \\
\hline 0.33 to 2.99999 A & 10 & 4 \\
\hline \multicolumn{2}{|c|}{3 to 20.5 A} & 100 \\
\hline\([1] \quad\) Subject to specification adder for compliance voltages greater than \(1 \mathrm{~V} \mathrm{rms}\). \\
\hline
\end{tabular}

Capacitance Specifications
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Range} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Absolute Uncertainty, tcal } \\
\pm 5^{\circ} \mathrm{C} \\
\pm \text { ( } \% \text { of output + floor }) \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Resolution} & \multicolumn{3}{|c|}{Allowed Frequency or Charge-Discharge Rate} \\
\hline & 90 days & 1 year & & Min and Max to Meet Specification & \[
\begin{gathered}
\text { Typical } \\
\text { Max for } \\
<0.5 \% \text { Error }
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \text { Typical } \\
\text { Max for } \\
<1 \% \text { Error }
\end{array}
\] \\
\hline \[
\begin{gathered}
0.19 \mathrm{to} \\
0.3999 \mathrm{nF} \\
\hline
\end{gathered}
\] & \(0.38+0.01 \mathrm{nF}\) & \(0.5+0.01 \mathrm{nF}\) & 0.1 pF & 10 Hz to 10 kHz & 20 kHz & 40 kHz \\
\hline \[
\begin{gathered}
0.4 \text { to } \\
1.0999 \mathrm{nF} \\
\hline
\end{gathered}
\] & \(0.38+0.01 \mathrm{nF}\) & \(0.5+0.01 \mathrm{nF}\) & 0.1 pF & 10 Hz to 10 kHz & 30 kHz & 50 kHz \\
\hline \[
\begin{gathered}
1.1 \mathrm{to} \\
3.2999 \mathrm{nF}
\end{gathered}
\] & \(0.38+0.01 \mathrm{nF}\) & \(0.5+0.01 \mathrm{nF}\) & 0.1 pF & 10 Hz to 3 kHz & 30 kHz & 50 kHz \\
\hline \[
\begin{array}{r}
3.3 \mathrm{to} \\
10.9999 \mathrm{nF}
\end{array}
\] & \(0.19+0.01 \mathrm{nF}\) & \(0.25+0.01 \mathrm{nF}\) & 0.1 pF & 10 Hz to 1 kHz & 20 kHz & 25 kHz \\
\hline \[
\begin{gathered}
11 \mathrm{to} \\
32.9999 \mathrm{nF} \\
\hline
\end{gathered}
\] & \(0.19+0.1 \mathrm{nF}\) & \(0.25+0.1 \mathrm{nF}\) & 0.1 pF & 10 Hz to 1 kHz & 8 kHz & 10 kHz \\
\hline \[
\begin{array}{r}
33 \mathrm{to} \\
109.999 \mathrm{nF} \\
\hline
\end{array}
\] & \(0.19+0.1 \mathrm{nF}\) & \(0.25+0.1 \mathrm{nF}\) & 1 pF & 10 Hz to 1 kHz & 4 kHz & 6 kHz \\
\hline \[
\begin{gathered}
110 \mathrm{to} \\
329.999 \mathrm{nF} \\
\hline
\end{gathered}
\] & \(0.19+0.3 \mathrm{nF}\) & \(0.25+0.3 \mathrm{nF}\) & 1 pF & 10 Hz to 1 kHz & 2.5 kHz & 3.5 kHz \\
\hline \[
\begin{gathered}
0.33 \mathrm{to} \\
1.09999 \mu \mathrm{~F} \\
\hline
\end{gathered}
\] & \(0.19+1 \mathrm{nF}\) & \(0.25+1 \mathrm{nF}\) & 10 pF & 10 to 600 Hz & 1.5 kHz & 2 kHz \\
\hline \[
\begin{gathered}
1.1 \mathrm{to} \\
3.29999 \mu \mathrm{~F} \\
\hline
\end{gathered}
\] & \(0.19+3 \mathrm{nF}\) & \(0.25+3 \mathrm{nF}\) & 10 pF & 10 to 300 Hz & 800 Hz & 1 kHz \\
\hline \[
\begin{gathered}
3.3 \mathrm{to} \\
10.9999 \mathrm{~F} \\
\hline
\end{gathered}
\] & \(0.19+10 \mathrm{nF}\) & \(0.25+10 \mathrm{nF}\) & 100 pF & 10 to 150 Hz & 450 Hz & 650 Hz \\
\hline \[
\begin{array}{r}
11 \mathrm{to} \\
32.9999 \mu \mathrm{~F} \\
\hline
\end{array}
\] & \(0.30+30 \mathrm{nF}\) & \(0.40+30 \mathrm{nF}\) & 100 pF & 10 to 120 Hz & 250 Hz & 350 Hz \\
\hline \[
\begin{gathered}
33 \mathrm{to} \\
109.999 \mu \mathrm{~F} \\
\hline
\end{gathered}
\] & \(0.34+100 \mathrm{nF}\) & \(0.45+100 \mathrm{nF}\) & 1 nF & 10 to 80 Hz & 150 Hz & 200 Hz \\
\hline \[
\begin{gathered}
110 \mathrm{to} \\
329.999 \mu \mathrm{~F} \\
\hline
\end{gathered}
\] & \(0.34+300 \mathrm{nF}\) & \(0.45+300 \mathrm{nF}\) & 1 nF & 0 to 50 Hz & 80 Hz & 120 Hz \\
\hline \[
\begin{array}{r}
0.33 \mu \mathrm{~F} \text { to } \\
1.09999 \mathrm{mF} \\
\hline
\end{array}
\] & \(0.34+1 \mu \mathrm{~F}\) & \(0.45+1 \mu \mathrm{~F}\) & 10 nF & 0 to 20 Hz & 45 Hz & 65 Hz \\
\hline \[
\begin{gathered}
1.1 \mathrm{to} \\
3.2999 \mathrm{mF} \\
\hline
\end{gathered}
\] & \(0.34+3 \mu \mathrm{~F}\) & \(0.45+3 \mu \mathrm{~F}\) & 10 nF & 0 to 6 Hz & 30 Hz & 40 Hz \\
\hline \[
\begin{gathered}
3.3 \mathrm{to} \\
10.9999 \mathrm{mF} \\
\hline
\end{gathered}
\] & \(0.34+10 \mu \mathrm{~F}\) & \(0.45+10 \mu \mathrm{~F}\) & 100 nF & 0 to 2 Hz & 15 Hz & 20 Hz \\
\hline \[
\begin{gathered}
11 \mathrm{to} \\
32.9999 \mathrm{mF} \\
\hline
\end{gathered}
\] & \(0.7+30 \mu \mathrm{~F}\) & \(0.75+30 \mu \mathrm{~F}\) & 100 nF & 0 to 0.6 Hz & 7.5 Hz & 10 Hz \\
\hline \[
\begin{gathered}
33 \mathrm{to} \\
110 \mathrm{mF} \\
\hline
\end{gathered}
\] & \(1.0+100 \mu \mathrm{~F}\) & \(1.1+100 \mu \mathrm{~F}\) & \(10 \mu \mathrm{~F}\) & 0 to 0.2 Hz & 3 Hz & 5 Hz \\
\hline
\end{tabular}
[1] The output is continuously variable from 190 pF to 110 mF .
[2] Specifications apply to both dc charge/discharge capacitance meters and ac RCL meters. The maximum allowable peak voltage is 3 V . The maximum allowable peak current is 150 mA , with an rms limitation of 30 mA below \(1.1 \mu \mathrm{~F}\) and 100 mA for \(1.1 \mu \mathrm{~F}\) and above.
[3] The maximum lead resistance for no additional error in 2-wire COMP mode is \(10 \Omega\).

Temperature Calibration (Thermocouple) Specifications
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{TC Type} & \multirow[t]{2}{*}{Range \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{```
Absolute Uncertainty
    Source/Measure
        tcal }\pm
            \pm ' C }\mp@subsup{}{}{[3]
```} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Type } \\
{ }^{[1]}
\end{gathered}
\]} & \multirow[t]{2}{*}{Range \({ }^{\circ} \mathrm{C}\)} & \multicolumn{2}{|l|}{```
Absolute Uncertainty
 Source/Measure
 tcal }\pm5\mp@subsup{}{}{\circ}\textrm{C
```

} <br>
\hline \& \& 90 days \& 1 year \& \& \& 90 days \& 1 year <br>
\hline \multirow{4}{*}{B} \& 600 to 800 \& 0.42 \& 0.44 \& \multirow[t]{3}{*}{L} \& -200 to -100 \& 0.37 \& 0.37 <br>
\hline \& 800 to 1000 \& 0.34 \& 0.34 \& \& -100 to 800 \& 0.26 \& 0.26 <br>
\hline \& 1000 to 1550 \& 0.30 \& 0.30 \& \& 800 to 900 \& 0.17 \& 0.17 <br>
\hline \& 1550 to 1820 \& 0.26 \& 0.33 \& \multirow[t]{5}{*}{N} \& -200 to -100 \& 0.30 \& 0.40 <br>
\hline \multirow{5}{*}{C} \& 0 to 150 \& 0.23 \& 0.30 \& \& -100 to -25 \& 0.17 \& 0.22 <br>
\hline \& 150 to 650 \& 0.19 \& 0.26 \& \& -25 to 120 \& 0.15 \& 0.19 <br>
\hline \& 650 to 1000 \& 0.23 \& 0.31 \& \& 120 to 410 \& 0.14 \& 0.18 <br>
\hline \& 1000 to 1800 \& 0.38 \& 0.50 \& \& 410 to 1300 \& 0.21 \& 0.27 <br>
\hline \& 1800 to 2316 \& 0.63 \& 0.84 \& \multirow[t]{4}{*}{R} \& 0 to 250 \& 0.48 \& 0.57 <br>
\hline \multirow{5}{*}{E} \& -250 to -100 \& 0.38 \& 0.50 \& \& 250 to 400 \& 0.28 \& 0.35 <br>
\hline \& -100 to -25 \& 0.12 \& 0.16 \& \& 400 to 1000 \& 0.26 \& 0.33 <br>
\hline \& -25 to 350 \& 0.10 \& 0.14 \& \& 1000 to 1767 \& 0.30 \& 0.40 <br>
\hline \& 350 to 650 \& 0.12 \& 0.16 \& \multirow[t]{4}{*}{S} \& 0 to 250 \& 0.47 \& 0.47 <br>
\hline \& 650 to 1000 \& 0.16 \& 0.21 \& \& 250 to 1000 \& 0.30 \& 0.36 <br>
\hline \multirow{5}{*}{J} \& -210 to -100 \& 0.20 \& 0.27 \& \& 1000 to 1400 \& 0.28 \& 0.37 <br>
\hline \& -100 to -30 \& 0.12 \& 0.16 \& \& 1400 to 1767 \& 0.34 \& 0.46 <br>
\hline \& -30 to 150 \& 0.10 \& 0.14 \& \multirow[t]{4}{*}{T} \& -250 to -150 \& 0.48 \& 0.63 <br>
\hline \& 150 to 760 \& 0.13 \& 0.17 \& \& -150 to 0 \& 0.18 \& 0.24 <br>
\hline \& 760 to 1200 \& 0.18 \& 0.23 \& \& 0 to 120 \& 0.12 \& 0.16 <br>
\hline \multirow{5}{*}{K} \& -200 to -100 \& 0.25 \& 0.33 \& \& 120 to 400 \& 0.10 \& 0.14 <br>
\hline \& -100 to -25 \& 0.14 \& 0.18 \& \multirow[t]{2}{*}{U} \& -200 to 0 \& 0.56 \& 0.56 <br>
\hline \& -25 to 120 \& 0.12 \& 0.16 \& \& 0 to 600 \& 0.27 \& 0.27 <br>
\hline \& 120 to 1000 \& 0.19 \& 0.26 \& \& \& \& <br>
\hline \& 1000 to 1372 \& 0.30 \& 0.40 \& \& \& \& <br>

\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{| [1] Temperature standard ITS-90 or IPTS TC simulating and measuring are not |
| :--- |
| [2] Resolution is $0.01{ }^{\circ} \mathrm{C}$ |
| [3] Does not include thermocouple error |}} \& | lectable. |
| :--- |
| for oper | \& electroma \& tic fields above \& \& <br>

\hline \& \& \&  \&  \&  \& \& <br>
\hline
\end{tabular}

Temperature Calibration (RTD) Specifications


## DC Power Specification Summary

	Voltage Range	Current Range					
		$\begin{gathered} 0.33 \text { to } \\ 329.99 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 0.33 \text { to } \\ 2.9999 \mathrm{~A} \end{gathered}$	$\begin{gathered} 3 \text { to } \\ 20.5 \mathrm{~A} \end{gathered}$			
		Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}, \pm$ (\% of watts output) ${ }^{[1]}$					
90 days	33 mV to 1020 V	0.021	$0.019{ }^{[2]}$	$\begin{aligned} & \hline 0.06^{1^{12}} \\ & \hline 0.07^{12} \\ & \hline \end{aligned}$			
1 year	33 mV to 1020 V	0.023	$0.022^{[2]}$				
[1] To determine dc power uncertainty with more precision, see the individual "AC Voltage Specifications," "AC Current Specifications," and "Calculating Power Uncertainty."   [2] Add $0.02 \%$ unless a settling time of 30 seconds is allowed for output currents $>10 \mathrm{~A}$ or for currents on the highest two current ranges within 30 seconds of an output current > 10 A .							

## AC Power ( 45 Hz to 65 Hz ) Specification Summary, PF=1

	Voltage Range	Current Range			
		$\begin{gathered} 3.3 \mathrm{to} \\ 8.999 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 9 \text { to } \\ 32.999 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 33 \mathrm{to} \\ 89.99 \mathrm{~mA} \\ \hline \end{gathered}$	90 to 329.99 mA
		Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}, \pm$ (\% of watts output)			
90 days	33 to 329.999 mV	0.13	0.09	0.13	0.09
	330 mV to 1020 V	0.11	0.07	0.11	0.07
1 year	33 to 329.999 mV	0.14	0.10	0.14	0.10
	330 mV to 1020 V	0.12	0.08	0.12	0.08
	Voltage Range	Current Range ${ }^{[2]}$			
		$\begin{array}{r} 0.33 \text { to } \\ 0.8999 \mathrm{~A} \end{array}$	$\begin{array}{r} 0.9 \text { to } \\ 2.1999 \mathrm{~A} \end{array}$	$\begin{gathered} 2.2 \text { to } \\ 4.4999 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 4.5 \text { to } \\ & 20.5 \mathrm{~A} \end{aligned}$
		Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}, \pm\left(\%\right.$ of watts output) ${ }^{[1]}$			
90 days	33 to 329.999 mV	0.12	0.10	0.12	0.10
	330 mV to 1020 V	0.10	0.08	0.11	0.09
1 year	33 to 329.999 mV	0.13	0.11	0.13	0.11
	330 mV to 1020 V	0.11	0.09	0.12	0.10

[1] To determine ac power uncertainty with more precision, see the individual "DC Voltage Specifications" and "DC Current Specifications" and "Calculating Power Uncertainty."
[2] Add $0.02 \%$ unless a settling time of 30 seconds is allowed for output currents $>10 \mathrm{~A}$ or for currents on the highest two current ranges within 30 seconds of an output current $>10 \mathrm{~A}$.

## Power and Dual Output Limit Specifications

Frequency	Voltages   (NORMAL)	Currents	Voltages   (AUX)	Power Factor   (PF)
dc	0 to $\pm 1020 \mathrm{~V}$	0 to $\pm 20.5 \mathrm{~A}$	0 to $\pm 7 \mathrm{~V}$	-
10 to 45 Hz	33 mV to 32.9999 V	3.3 mA to 2.99999 A	10 mV to 5 V	0 to 1
45 to 65 Hz	33 mV to 1000 V	3.3 mA to 20.5 A	10 mV to 5 V	0 to 1
65 to 500 Hz	330 mV to 1000 V	33 mA to 2.99999 A	100 mV to 5 V	0 to 1
65 to 500 Hz	3.3 to 1000 V	33 mA to 20.5 A	100 mV to 5 V	0 to 1
500 Hz to 1 kHz	330 mV to 1000 V	33 mA to 20.5 A	100 mV to 5 V	1
1 to 5 kHz	3.3 to 1000 V	33 mA to 2.99999 A	100 mV to 5 V	1
5 to 10 kHz	3.3 to 1000 V	33 to 329.99 mA	1 to 5 V	1

Notes

- The range of voltages and currents shown in "DC Voltage Specifications," "DC Current Specifications," "AC Voltage (Sine Wave) Specifications," and "AC Current (Sine Wave) Specifications" are available in the power and dual output modes (except minimum current for ac power is 0.33 mA ). However, only those limits shown in this table are specified. See "Calculating Power Uncertainty" to determine the uncertainty at these points.
- The phase adjustment range for dual ac outputs is $0^{\circ}$ to $\pm 179.99^{\circ}$. The phase resolution for dual ac outputs is 0.01 degree.


## Phase Specifications

1-Year Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C},\left(\Delta \Phi^{\circ}\right)$					
10 to	65 to	5 to			
65 Hz	500 Hz	1 Hz to	1 kHz	5 kHz	$10^{\circ} \mathrm{kHz}$
$0.10^{\circ}$	$0.25^{\circ}$	$0.5^{\circ}$	$2.5^{\circ}$	$5^{\circ}$	30 kHz


Phase ( $\Phi$ ) Watts	Phase ( $\Phi$ ) VARs	PF	Power Uncertainty Adder due to Phase Error					
			$\begin{aligned} & 10 \mathrm{to} \\ & 65 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 65 \mathrm{to} \\ 500 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 500 \mathrm{~Hz} \text { to } \\ 1 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 1 \mathrm{to} \\ 5 \mathrm{kHz} \end{gathered}$	$\begin{gathered} 5 \text { to } \\ 10 \mathrm{kHz} \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{to} \\ 30 \mathrm{kHz} \end{gathered}$
$0^{\circ}$	$90^{\circ}$	1.000	0.00 \%	0.00 \%	0.00 \%	0.10 \%	0.38 \%	1.52 \%
$10^{\circ}$	$80^{\circ}$	0.985	0.03 \%	0.08 \%	0.16 \%	0.86 \%	1.92 \%	4.58 \%
$20^{\circ}$	$70^{\circ}$	0.940	0.06 \%	0.16 \%	0.32 \%	1.68 \%	3.55 \%	7.84 \%
$30^{\circ}$	$60^{\circ}$	0.866	0.10 \%	0.25 \%	0.51 \%	2.61 \%	5.41 \%	11.54 \%
$40^{\circ}$	$50^{\circ}$	0.766	0.15 \%	0.37 \%	0.74 \%	3.76 \%	7.69 \%	16.09 \%
$50^{\circ}$	$40^{\circ}$	0.643	0.21 \%	0.52 \%	1.04 \%	5.29 \%	10.77 \%	22.21 \%
$60^{\circ}$	$30^{\circ}$	0.500	0.30 \%	0.76 \%	1.52 \%	7.65 \%	15.48 \%	31.60 \%
$70^{\circ}$	$20^{\circ}$	0.342	0.48 \%	1.20 \%	2.40 \%	12.08 \%	24.33 \%	49.23 \%
$80^{\circ}$	$10^{\circ}$	0.174	0.99 \%	2.48 \%	4.95 \%	24.83 \%	49.81 \%	100.00 \%
$90^{\circ}$	$0^{\circ}$	0.000	-	-	-	-	-	-

To calculate exact ac Watts power adders due to phase uncertainty for values not shown, use the following formula:

$$
\operatorname{Adder}(\%)=100\left(1-\frac{\operatorname{Cos}(\Phi+\Delta \Phi)}{\operatorname{Cos}(\Phi)}\right)
$$

For example: for a PF of $.9205(\Phi=23)$ and a phase uncertainty of $\Delta \Phi=0.15$, the ac Watts power adder is:

$$
\operatorname{Adder}(\%)=100\left(1-\frac{\operatorname{Cos}(23+.15)}{\operatorname{Cos}(23)}\right)=0.11 \%
$$

## Calculating Power Uncertainty

Overall uncertainty for power output in Watts (or VARs) is based on the root sum square (rss) of the individual uncertainties in percent for the selected voltage, current, and power factor parameters:

Watts uncertainty $\quad U_{\text {power }}=\sqrt{U^{2} \text { voltage }+U^{2} \text { current }+U^{2} \text { PFadder }}$
VARs uncertainty UVARs $=\sqrt{U^{2} \text { voltage }+U^{2} \text { current }+U^{2} \text { vaRsadder }}$
Because there are an infinite number of combinations, you should calculate the actual ac power uncertainty for your selected parameters. The method of calculation is best shown in the following examples (using 90-day specifications):
Example 1 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 60 \mathrm{~Hz}$, Power Factor $=1.0(\Phi=0)$, 1 year specifications
Voltage Uncertainty Uncertainty for 100 V at 60 Hz is $150 \mathrm{ppm}+2 \mathrm{mV}$, totaling:
$100 \mathrm{~V} \times 190 \times 10^{-6}=15 \mathrm{mV}$ added to $2 \mathrm{mV}=17 \mathrm{mV}$. Expressed in percent:
$17 \mathrm{mV} / 100 \mathrm{~V} \times 100=\underline{0.017} \%$ (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A is $0.036 \%+100 \mu \mathrm{~A}$, totaling:
$1 \mathrm{~A} \times 0.00036=360 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.46 \mathrm{~mA}$. Expressed in percent:
$0.46 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.046 \%}$ (see "AC Current (Sine Waves) Specifications").
PF Adder Watts Adder for $\mathrm{PF}=1(\Phi=0)$ at 60 Hz is $\underline{0 \%}$ (see "Phase Specifications").
Total Watts Output Uncertainty $=$ Upower $=\sqrt{0.017^{2}+0.046^{2}+0^{2}}=0.049 \%$
Example 2 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 400 \mathrm{~Hz}$, Power Factor $=0.5$ ( $\Phi=60$ )
Voltage Uncertainty Uncertainty for 100 V at 400 Hz is, $150 \mathrm{ppm}+2 \mathrm{mV}$, totaling:
$100 \mathrm{~V} \times 190 \times 10^{-6}=15 \mathrm{mV}$ added to $2 \mathrm{mV}=17 \mathrm{mV}$. Expressed in percent:
$17 \mathrm{mV} / 100 \mathrm{~V} \times 100=0.017$ \% (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A is $0.036 \%+100 \mu \mathrm{~A}$, totaling:
$1 \mathrm{~A} \times 0.00036=360 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.46 \mathrm{~mA}$. Expressed in percent:
$0.46 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.046 \%}$ (see "AC Current (Sine Waves) Specifications").
PF Adder Watts Adder for PF $=0.5(\Phi=60)$ at 400 Hz is $0.76 \%$ (see "Phase Specifications").
Total Watts Output Uncertainty $=$ Upower $=\sqrt{0.017^{2}+0.046^{2}+0.76^{2}}=0.76 \%$
VARs When the Power Factor approaches 0.0 , the Watts output uncertainty becomes unrealistic because the dominant characteristic is the VARs (volts-amps-reactive) output. In these cases, calculate the Total VARs Output Uncertainty, as shown in example 3:

Example 3 Output: $100 \mathrm{~V}, 1 \mathrm{~A}, 60 \mathrm{~Hz}$, Power Factor $=0.174$ ( $\Phi=80$ )
Voltage Uncertainty Uncertainty for 100 V at 400 Hz is, $150 \mathrm{ppm}+2 \mathrm{mV}$, totaling:
$100 \mathrm{~V} \times 190 \times 10^{-6}=15 \mathrm{mV}$ added to $2 \mathrm{mV}=17 \mathrm{mV}$. Expressed in percent:
$17 \mathrm{mV} / 100 \mathrm{~V} \times 100=0.017$ \% (see "AC Voltage (Sine Wave) Specifications").
Current Uncertainty Uncertainty for 1 A is $0.036 \%+100 \mu \mathrm{~A}$, totaling:
$1 \mathrm{~A} \times 0.00036=360 \mu \mathrm{~A}$ added to $100 \mu \mathrm{~A}=0.46 \mathrm{~mA}$. Expressed in percent:
$0.46 \mathrm{~mA} / 1 \mathrm{~A} \times 100=\underline{0.046 \%}$ (see "AC Current (Sine Waves) Specifications").
VARs Adder VARs Adder for $\Phi=80$ at 60 Hz is $\underline{0.02 \%}$ (see "Phase Specifications").
Total VARS Output Uncertainty $=$ UVARs $=\sqrt{0.017^{2}+0.046^{2}+0.03^{2}}=0.058 \%$

## Additional Specifications

The following paragraphs provide additional specifications for the 5520A Calibrator ac voltage and ac current functions. These specifications are valid after allowing a warm-up period of 30 minutes, or twice the time the 5520A has been turned off. All extended range specifications are based on performing the internal zero-cal function at weekly intervals, or when the ambient temperature changes by more than $5^{\circ} \mathrm{C}$.

Frequency Specifications

Frequency Range	Resolution	1-Year Absolute Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}$	Jitter
0.01 to 119.99 Hz	0.01 Hz	$2.5 \mathrm{ppm} \pm 5 \mu \mathrm{~Hz}{ }^{[1]}$	100 nS
120.0 to 1199.9 Hz	0.1 Hz		
1.200 to 11.999 kHz	1.0 Hz		
12.00 to 119.99 kHz	10 Hz		
120.0 to 1199.9 kHz	100 Hz		
1.200 to 2.000 MHz	1 kHz		
[1] With REF CLK set to ext, the frequency uncertainty of the 5520 A is the uncertainty of the external $10 \mathrm{MHz} \mathrm{clock} \pm 5 \mu \mathrm{~Hz}$. The amplitude of the 10 MHz external reference clock signal should be between 1 V and 5 V p-p.			

## Harmonics (2nd to 50th) Specifications

Fundamental   Frequency	Voltages   NORMAL Terminals	Currents	Voltages   AUX Terminals	Amplitude   Uncertainty
10 to 45 Hz	33 mV to 32.9999 V	3.3 mA to 2.99999 A	10 mV to 5 V	
45 to 65 Hz	33 mV to 1000 V	3.3 mA to 20.5 A	10 mV to 5 V	
65 to 500 Hz	33 mV to 1000 V	33 mA to 20.5 A	100 mV to 5 V	
500 Hz to 5 kHz	330 mV to 1000 V	33 mA to 20.5 A	100 mV to 5 V	
5 Same \% of output				
as the equivalent				
single output, but				
twice the floor				
adder.				

Phase uncertainty for harmonic outputs is 1 degree or the phase uncertainty shown in "Phase Specifications" for the particular output, whichever is greater. For example, the phase uncertainty of a 400 Hz fundamental output and 10 kHz harmonic output is $10^{\circ}$ (from "Phase Specifications"). Another example, the phase uncertainty of a 60 Hz fundamental output and a 400 Hz harmonic output is 1 degree.
[1] The maximum frequency of the harmonic output is 30 kHz ( 10 kHz for 3 to 5 V on the Aux terminals). For example, if the fundamental output is 5 kHz , the maximum selection is the 6 th harmonic ( 30 kHz ). All harmonic frequencies (2nd to 50 th ) are available for fundamental outputs between 10 Hz and 600 Hz ( 200 Hz for 3 to 5 V on the Aux terminals).

## Example of determining Amplitude Uncertainty in a Dual Output Harmonic Mode

## What are the amplitude uncertainties for the following dual outputs?

NORMAL (Fundamental) Output:
100V, 100 Hz . $\qquad$ From "AC Voltage (Sine Wave) Specifications" the single output specification for 100V, 100 Hz , is $0.015 \%+2 \mathrm{mV}$. For the dual output in this example, the specification is 0.015 $\%+4 \mathrm{mV}$ as the $0.015 \%$ is the same, and the floor is twice the value ( $2 \times 2 \mathrm{mV}$ ).
AUX (50th Harmonic) Output:
100 mV , 5 kHz $\qquad$ .From "AC Voltage (Sine Wave) Specifications" the auxiliary output specification for 100 $\mathrm{mV}, 5 \mathrm{kHz}$, is $0.15 \%+450 \mathrm{mV}$. For the dual output in this example, the specification is $0.15 \%+900 \mathrm{mV}$ as the $0.15 \%$ is the same, and the floor is twice the value ( $2 \times 450$ mV ).

## AC Voltage (Sine Wave) Extended Bandwidth Specifications

Range	Frequency	1-Year Absolute Uncertainty tcal $\pm 5^{\circ} \mathrm{C}$	Max Voltage Resolution
Normal Channel (Single Output Mode)			
1.0 to 33 mV	0.01 to 9.99 Hz	$\begin{gathered} \pm(5.0 \% \text { of output }+ \\ 0.5 \% \text { of range) } \end{gathered}$	Two digits, e.g., 25 mV
34 to 330 mV			Three digits
0.4 to 33 V			Two digits
0.3 to 3.3 V	500.1 kHz to 1 MHz	-10 dB at 1 MHz , typical	Two digits
	1.001 to 2 MHz	-31 dB at 2 MHz , typical	
Auxiliary Output (Dual Output Mode)			
10 to 330 mV	0.01 to 9.99 Hz	$\begin{gathered} \pm(5.0 \% \text { of output }+ \\ 0.5 \% \text { of range) } \\ \hline \end{gathered}$	Three digits
0.4 to 5 V			Two digits

## AC Voltage (Non-Sine Wave) Specifications

Triangle Wave \& Truncated Sine Range, p-p	Frequency	$\begin{gathered} \text { 1-Year Absolute Uncertainty, } \\ \text { tcal } \pm 5{ }^{\circ} \mathbf{C}, \\ \pm(\% \text { of output }+\% \text { of range })^{[2]} \\ \hline \end{gathered}$	Max Voltage Resolution
Normal Channel (Single Output Mode)			
2.9 mV to 93 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to $100 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
Auxiliary Output (Dual Output Mode)			
93 mV to 14 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$5.0+0.5$	
[1] To convert p-p to rms for triangle wave, multiply the p-p value by 0.2886751 . To convert p-p to rms for truncated sine wave, multiply the $p-p$ value by 0.2165063 .			
[2] Uncertainty is stated in p-p. Amplitude is verified using an rms-responding DMM.			
[3] Uncertainty for Truncated Sine outputs is typical over this frequency band.			


Square Wave Range (p-p)	Frequency	$\begin{gathered} \text { 1-Year Absolute Uncertainty, } \\ \text { tcal } \pm 5^{\circ} \mathrm{C} \\ \pm \text { (\% of output }+\% \text { of range })^{[ } \end{gathered}$	Max Voltage Resolution
Normal Channel (Single Output Mode)			
2.9 mV to 66 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 20 kHz	$0.5+0.25$	
	20 to 100 kHz	$5.0+0.5$	
Auxiliary Output (Dual Output Mode)			
66 mV to 14 V	0.01 to 10 Hz	$5.0+0.5$	Two digits on each range
	10 to 45 Hz	$0.25+0.5$	Six digits on each range
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to $10 \mathrm{kHz}{ }^{[3]}$	$5.0+0.5$	
[1] To convert p-p to rms for square wave, multiply the $p-p$ value by 0.5 .   [2] Uncertainty is stated in p-p. Amplitude is verified using an rms-responding DMM.   [3] Limited to 1 kHz for Auxiliary outputs $\geq 6.6 \mathrm{~V}$ p-p.			

AC Voltage, DC Offset Specifications

Range ${ }^{[1]}$ (Normal Channel)	Offset Range ${ }^{[2]}$	Max   Peak   Signal	1-Year Absolute Offset   Uncertainty, tcal $\pm 5^{\circ} \mathrm{C}{ }^{[3]}$ $\pm$ (\% dc output + floor)
Sine Waves (rms)			
3.3 to 32.999 mV	0 to 50 mV	80 mV	$0.1+33 \mu \mathrm{~V}$
33 to 329.999 mV	0 to 500 mV	800 mV	$0.1+330 \mu \mathrm{~V}$
0.33 mV to 3.29999 V	0 to 5 V	8 V	$0.1+3300 \mu \mathrm{~V}$
3.3 to 32.9999 V	0 to 50 V	55 V	$0.1+33 \mathrm{mV}$
Triangle Waves and Truncated Sine Waves (p-p)			
9.3 to 92.999 mV	0 to 50 mV	80 mV	$0.1+93 \mu \mathrm{~V}$
93 to 929.999 mV	0 to 500 mV	800 mV	$0.1+930 \mu \mathrm{~V}$
0.93 mV to 9.29999 V	0 to 5 V	8 V	$0.1+9300 \mu \mathrm{~V}$
9.3 mV to 92.9999 V	0 to 50 V	55 V	$0.1+93 \mathrm{mV}$
Square Waves (p-p)			
6.6 to 65.999 mV	0 to 50 mV	80 mV	$0.1+66 \mu \mathrm{~V}$
66 to 659.999 mV	0 to 500 mV	800 mV	$0.1+660 \mu \mathrm{~V}$
0.66 mV to 6.59999 V	0 to 5 V	8 V	$0.1+6600 \mu \mathrm{~V}$
6.6 mV to 65.9999 V	0 to 50 V	55 V	$0.1+66 \mathrm{mV}$

[1] Offsets are not allowed on ranges above the highest range shown above.
[2] The maximum offset value is determined by the difference between the peak value of the selected voltage output and the allowable maximum peak signal. For example, a 10 V p-p square wave output has a peak value of 5 V , allowing a maximum offset up to $\pm 50 \mathrm{~V}$ to not exceed the 55 V maximum peak signal. The maximum offset values shown above are for the minimum outputs in each range.
[3] For frequencies 0.01 to 10 Hz , and 500 kHz to 2 MHz , the offset uncertainty is $5 \%$ of output, $\pm 1 \%$ of the offset range.

## AC Voltage, Square Wave Characteristics

Risetime   $@ 1 \mathrm{kHz}$   Typical	Settling Time   @ 1 kHz   Typical	Overshoot   @ $1 \mathbf{k H z}$   Typical	Duty Cycle   Range	Duty Cycle Uncertainty

## AC Voltage, Triangle Wave Characteristics (typical)

Linearity to $\mathbf{1 ~ k H z}$	Aberrations
$0.3 \%$ of $\mathrm{p}-\mathrm{p}$ value, from $10 \%$ to $90 \%$ point	$<1 \%$ of $\mathrm{p}-\mathrm{p}$ value, with amplitude $>50 \%$ of range

## AC Current (Non-Sine Wave) Specifications

Triangle Wave \& Truncated Sine Wave Range p-p	Frequency	1-Year Absolute Uncertainty tcal $\pm 5^{\circ} \mathrm{C}$   $\pm$ ( $\%$ of output $+\%$ of range)	Max Current Resolution
$\begin{gathered} 0.047 \mathrm{to} \\ 0.92999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 0.93 \mathrm{to} \\ 9.29999 \mathrm{~mA}{ }^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 9.3 \text { to } \\ 92.9999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 93 \mathrm{to} \\ 929.999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.5$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 0.93 \text { to } \\ 8.49999 \text { A } \end{gathered}$	10 to 45 Hz	$0.5+1.0$	Six digits
	45 Hz to 1 kHz	$0.5+0.5$	
	1 to 10 kHz	$10+2$	
8.5 to $57 \mathrm{~A}^{[2]}$	45 to 500 Hz	$0.5+0.5$	
	500 Hz to 1 kHz	$1.0+1.0$	
[1] Frequency limited to 1 kHz with LCOMP on.   [2] Frequency limited to 440 Hz with LCOMP on.			

## AC Current (Non-Sine Wave) Specifications (cont.)

Square Wave Range p-p	Frequency	$\begin{aligned} & \text { 1-Year Absolute Uncertainty, } \\ & \text { tcal } \pm 5^{\circ} \mathrm{C}, \\ & \pm\left(\% \text { of output }+\%_{\text {of range }}\right) \\ & \hline \end{aligned}$	Max Current Resolution
$\begin{gathered} 0.047 \mathrm{to} \\ 0.65999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 0.66 \text { to } \\ 6.59999 \mathrm{~mA}{ }^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 6.6 \mathrm{to} \\ 65.9999 \mathrm{~mA}^{[1]} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.25$	
	1 to 10 kHz	$10+2$	
$\begin{gathered} 66 \mathrm{to} \\ 659.999 \mathrm{~mA} \end{gathered}$	10 to 45 Hz	$0.25+0.5$	Six digits
	45 Hz to 1 kHz	$0.25+0.5$	
	1 to 10 kHz	$10+2$	
$\begin{aligned} & 0.66 \text { to } \\ & 5.99999 \text { A }^{[2]} \end{aligned}$	10 to 45 Hz	$0.5+1.0$	
	45 Hz to 1 kHz	$0.5+0.5$	
	1 to 10 kHz	$10+2$	
6 to $41 \mathrm{~A}^{[2]}$	45 to 500 Hz	$0.5+0.5$	
	500 Hz to 1 kHz	$1.0+1.0$	
1] Frequency limited to 1 kHz with LCOMP on.   2] Frequency limited to 440 Hz with LCOMP on.			

## AC Current, Square Wave Characteristics (typical)

Range	LCOMP	Risetime	Settling Time	Overshoot
I <6 A @ 400 Hz	off	$25 \mu \mathrm{~S}$	$40 \mu \mathrm{~s}$ to $1 \%$ of final value	$<10 \%$ for $<1 \mathrm{~V}$ Compliance
3 A \& 20 A Ranges	on	$100 \mu \mathrm{~s}$	$200 \mu \mathrm{~s}$ to $1 \%$ of final value	$<10 \%$ for $<1 \mathrm{~V}$ Compliance

## AC Current, Triangle Wave Characteristics (typical)

Linearity to 400 Hz	Aberrations
$0.3 \%$ of p-p value, from $10 \%$ to $90 \%$ point	$<1 \%$ of p-p value, with amplitude $>50 \%$ of range

Fluke. Keeping your world up and running.

Fluke Corporation
PO Box 9090, Everett, WA USA 98206
Fluke Europe B.V.
PO Box 1186, 5602 BD
Eindhoven, The Netherlands
For more information call:
In the U.S.A. (800) 443-5853 or
Fax (425) 446-5116
Europe/M-East/Africa +31 (40) 2675200 or
Fax +31 (40) 2675222
Canada (800) 36-FLUKE or
Fax (905) 890-6866
From other countries +1 (425) 446-5500 or
Fax +1 (425) 446-5116
Web access: http://www.fluke.com
©2005 Fluke Corporation. All rights reserved.
Printed in U.S.A. 9/2005 2531850 D-EN-N Rev A

