Digital Multimeters

5 1/2 Digit DMM Series Enabling Dual Input and Display
R6451A/6452A

- R6451A: General-Purpose Low-Price DMM with Standard Measurement Functions
R6452A: Full-Functional DMM with DualChannel Input and Dual Display

(Photo is R6452A)

R6451A/6452A

Digital Multimeters

New R6451A/6452A series digital multimeters were designed for diverse applications.
Theseries is provided with a variety of interfaces for use in R\&D sections and production lines, and it ensures battery operation for field applications. With dual-channel input and dual display, the R6452A provides a new measurement environment.
The series includes two models: R6451A low-price basic model and R6452A with full measurement functions including frequency measurement.
■ Dual-Channel Input for New Measurement Environment (R6452A)

■ Maximum Display of 199999 (with a Sampling Rate of 2.5 Times/Second) and Maximum Sampling Rate of 80 Times/Second (with a Maximum Display of 1999)
AC Voltage and Current (AC + DC) Measurement with True RMS (R6451A/6452A) and Frequency M easurement (R6452A)

- Standard RS-232C Interface and Optional GPIB Interface and BCD Data Output Units
- Memory Card (SRAM Card Conforming to JEIDA Ver.4) Ensures Data Compatibility with Personal Computers

Various Interfaces Can be Implemented for A utomated Measurements
■ Optional Battery Unit Allows the Use as a HighPerformance DMM for Field M easurement
\square Diverse and Combination Calculation Functions
■ Memory Function for Panel Settings (Recalls Previous Condition Settings at Power On)
■ Large Easy-to-Read Electron-Ray Indicator Tube
■ High-Speed Analog Bar Graph with a Sampling Rate of 80 Times/Second is Available for Instantaneous Trendy Check (R6451A)

■ Wide Power Range (90 to 250 V)

Measurement accuracy: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 85 \%$ RH or less (75% or less is guaranteed for 1 year at $20-\mathrm{M}$ and $200-\mathrm{M} \Omega$ ranges.) The display value is $\pm \%$ of reading \pm digits.
Temperature coefficient: $0.1 \times$ (measurement accuracy)/ $/{ }^{\circ} \mathrm{C}$ at $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The display value is ($\pm \%$ of reading \pm digits) $/{ }^{\circ} \mathrm{C}$.
DC voltage measurement d:digit

Range	200 mV	2000 mV	20 V	200 V	1000 V
Maximum display	199999				
Resolution	$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV	10 mV
Measurement accuracy	$\pm 0.018 \% \pm 6 \mathrm{~d}$	$\pm 0.018 \% \pm 5 \mathrm{~d}$	$\pm 0.020 \% \pm 5 \mathrm{~d}$	$\pm 0.020 \% \pm 5 \mathrm{~d}$	$\pm 0.020 \% \pm 5 \mathrm{~d}$
Input impedance	$1000 \mathrm{M} \Omega$ or more	$11.1 \mathrm{M} \Omega \pm 1 \%$	$10.1 \mathrm{M} \Omega \pm 1 \%$	$10.0 \mathrm{M} \Omega \pm 1 \%$	
Maximum allowable applied voltage	1100 V (DC or AC peak voltage, continuous)				

DC voltage noise rejection ratio

Sampling rate	Effective common mode noise rejection ratio (unbalanced impedance of $1 \mathrm{k} \Omega$)	Normal mode noise rejection ratio
	$\mathrm{AC} 50 / 60 \mathrm{~Hz}+0.1 \%, \mathrm{DC}$	$\mathrm{AC} 50 / 60 \mathrm{~Hz}+0.1 \%$
FAST	Approx. 60 dB	0 dB
MID	Approx. 120 dB	Approx. 60 dB
SLOW		

AC voltage measurement (True RMS, AC, AC+DC)
With an input of 5\% or more of the full scale

Range			200 mV	2000 mV	20 V	200 V	700 V
Maximum display		AC	199999				70999
		AC+DC	19999				7099
Resolution			$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV	10 mV
	20 Hz to 45 Hz		$\pm 0.6 \% \pm 350 \mathrm{~d}$				
	45 Hz to 20 kHz		$\pm 0.2 \% \pm 200 \mathrm{~d}$				
	20 kHz to 30 kHz		$\pm 0.5 \% \pm 200 \mathrm{~d}$				
	30 kHz to 100 kHz		$\pm 4 \% \pm 500 \mathrm{~d}$				
Input impedance			$1.1 \mathrm{M} \Omega \pm 10 \%$: 100 pF or less				
Input range			5% or more of the full scale				
Orest factor			3:1 at the full scale				
Maximumallowableappliedvoltage			$800 \mathrm{Vrms}, 1100 \mathrm{~V}$ (peak), $10^{\top} \mathrm{V}-\mathrm{z}$				
Response time			Approx. 1 second (0.1% or less of the final value in the same range)				

Resistance measurement

| Range | 200Ω | 2000Ω | $20 \mathrm{k} \Omega$ | $200 \mathrm{k} \Omega$ | $2000 \mathrm{k} \Omega$ | $20 \mathrm{M} \Omega$ | $200 \mathrm{M} \Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum display | 199999 | | | | | | 19999 |
| Resolution | $1 \mathrm{~m} \Omega$ | $10 \mathrm{~m} \Omega$ | $100 \mathrm{~m} \Omega$ | 1Ω | 10Ω | 100Ω | $10 \mathrm{k} \Omega$ |
| Measured applied current | 3 mA | 1 mA | $100 \mu \mathrm{~A}$ | $10 \mu \mathrm{~A}$ | $1 \mu \mathrm{~A}$ | 100 nA | 10 nA |
| Measurement accuracy | $\pm 0.04 \% \pm 6 \mathrm{~d}$ | $\pm 0.02 \% \pm 5 \mathrm{~d}$ | $\pm 0.02 \% \pm 5 \mathrm{~d}$ | $\pm 0.02 \% \pm 5 \mathrm{~d}$ | $\pm 0.03 \% \pm 6 \mathrm{~d}$ | $\pm 0.2 \% \pm 10 \mathrm{~d}$ | $\pm 2.0 \% \pm 2 \mathrm{~d}$ |
| Open circuit voltage
 7.5 V or less
 Maximum allowable
 applied voltage | | | | | | | |

* When the null function is used

DC current measurement

Range	200 mA	10 A
Maximum display	199999	109999
Resolution	$1 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
Measurement accuracy	$\pm 0.1 \% \pm 6 \mathrm{~d}$	$\pm 0.2 \% \pm 6 \mathrm{~d}$
Input terminal resistance	1.5Ω or less*	0.04Ω or less*
Overcurrent	0.5 A 250 VIEC127 sheet 1	
protection	Protected by a quick-blowing fuse	15 A 250 V with 10000 -Ainterrupting capacity Protected by a quick-blowing fuse

[^0]AC current measurement (True RMS, AC, AC+DC) With an input of 5% or more of the full scale

Range		200 mA	10 A
Maximum display	AC	199999	109999
	AC+DC	19999	10999
Resolution		$1 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
Measurement accuracy	20 Hz to 1 kHz	$\pm 0.6 \% \pm 200 \mathrm{~d}$	
	1 kHz to 5 kHz	$\pm 5.0 \% \pm 200 \mathrm{~d}$	
Orest factor		3:1 at the full scale	
Input terminal resistance		1.5Ω or less*	0.04Ω or less*
Overcurrent protection-		0.5 A 250 VIEC 127 sheet 1	15A/250 V with 10000-Ainterrupting capacity Protected by a quick-blowing fuse
		Protected by a quick-blowing fuse	
Response time		Approx. 1 second (0.1% or less of the final value in the same range)	

* The resistance of the protection fuse not included.

4-20 mA measurement

	Displays the calculation result by assigning $(4-20 \mathrm{~mA})$ to $(0-100 \%)$
Maximum display	99999
Resolution	0.01%

*Other specifications are the same as those for 200-mA range for DC current measurement.
Measurement time
Sampling mode: Free-run

Function	Measurement time		
	FAST	MID	SLOW
DC voltage measurement	$12.5(80)$	$100(10)$	$400(2.5)$
AC voltage measurement (AC coupling)	$12.5(80)$	$100(10)$	$400(2.5)$
Resistance measurement	$12.5(80)$	$100(10)$	$400(2.5)$
DC current measurement	$12.5(80)$	$100(10)$	$400(2.5)$
ACcurrent measurement (AC coupling)	$12.5(80)$	$100(10)$	$400(2.5)$
ACcurrent measurement (AC+ DCcoupling)	$38(26.3)$	$220(4.5)$	$820(1.2)$
Diode measurement	$12.5(80)$	$100(10)$	$400(2.5)$
Continuity measurement	$12.5(80)$	$100(10)$	$400(2.5)$
$4-20$ mA measurement	$12.5(80)$	$100(10)$	$400(2.5)$

Digital Multimeters

5 1/2 Digit DMM Series Enabling Dual Input and Display

R6452A
Specifications

Measurement accuracy: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$ or less (75% or less is guaranteed for 1 year at $20-\mathrm{M}$ and $200-\mathrm{M} \Omega$ ranges.) The display value is $\pm \%$ of reading \pm digits.
Temperature coefficient: $0.1 \times$ (measurement accuracy)/ ${ }^{\circ} \mathrm{C}$ at $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The display value is ($\pm \%$ of reading \pm digits) $/{ }^{\circ} \mathrm{C}$.
DC voltage measurement d:digit

Range	200 mV	2000 mV	20 V	200 V	1000 V
Maximum display	199999				109999
Resolution	$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV	10 mV
Measurement accuracy	$\pm 0.018 \% \pm 6 \mathrm{~d}$	$\pm 0.018 \%+5 \mathrm{~d}$	$\pm 0.020 \%+5 \mathrm{~d}$	$\pm 0.020 \%+5 \mathrm{~d}$	$\pm 0.020 \%+5 \mathrm{~d}$
Input impedance	$1000 \mathrm{M} \Omega$ or more	$11.1 \mathrm{M} \Omega \pm 1 \%$	$10.1 \mathrm{M} \Omega \pm 1 \%$	$10.0 \mathrm{M} \Omega \pm 1 \%$	
Maximumallowable applied voltage	1100 V (DCor ACpeakvoltage, continuous)				

DC voltage measurement (B-channel input)

Range	2000 mV	20 V	
Maximum display	19999		
Resolution	$100 \mu \mathrm{~V}$		
$\pm 0.025 \% \pm 2 \mathrm{~d}$			
Measurement accuracy	10 mV		
Input impedance	Between B-channel input terminals: $10 \mathrm{M} \Omega \pm 5 \%$, Between B-channel input terminal and COM terminal: 5 M $\Omega \pm 5 \%$		
Maximum allowable applied voltage	Between B-channel input terminals: 200 V (DCor ACpeal voltage, continuous) Between B-channel input terminal and COM terminal: 200 V (DCor ACpeal voltage, continuous) Between B-channel input terminal and chassis:450 V (DCor AC peal voltage, continuous)		

DC voltage noise rejection ratio

Sampling rate	Efective common mode noise rejection ratio (unbalanced impedance of $1 \mathrm{k} \Omega$	Normal mode noise rejection ratio
	$\mathrm{AC} 50 / 60 \mathrm{~Hz} \pm 0.1 \%, \mathrm{DC}$	$\mathrm{AC} 50 / 60 \mathrm{~Hz} \pm 0.1 \%$
FAST	Approx. 60 dB	0 dB
MID	Approx. 120 dB	Approx. 60 dB
SLOW		

AC voltage measurement (True RMS, AC, AC+DC)
With an input of 5% or more of the full scale

Range		200 mV	2000 mV	20 V	200 V	700 V
Maximum display	AC	199999				70999
	AC+DC	19999				7099
Resolution		$1 \mu \mathrm{~V}$	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	1 mV	10 mV
	45 Hz	$\pm 0.6 \% \pm 350 \mathrm{~d}$				
	20 kHz	$\pm 0.2 \%+200 \mathrm{~d}$				
	30 kHz	$\pm 0.5 \%+200 \mathrm{~d}$				
	100 kHz	$\pm 4 \% \pm 500 \mathrm{~d}$				
Input impedance		$1.1 \mathrm{~m} \Omega \pm 10 \%$: 100 pFor less				
Input range		5% or more of the full scale				
Orest factor		3:1 at the full scale				
Maximum allowable applied voltage		$800 \mathrm{Vrms}, 1100 \mathrm{~V}$ (peak), 10 'VHz				
Response time		Approx. 1 second (0.1% or less of the final value in the same range)				

Resistance measurement

| Range | 200Ω | 2000Ω | $20 \mathrm{k} \Omega$ | $200 \mathrm{k} \Omega$ | $2000 \mathrm{k} \Omega$ | $20 \mathrm{M} \Omega$ | $200 \mathrm{M} \Omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum display | 199999 | | | | | | 19999 |
| Resolution | $1 \mathrm{~m} \Omega$ | $10 \mathrm{~m} \Omega$ | $100 \mathrm{~m} \Omega$ | 1Ω | 10Ω | 100Ω | $10 \mathrm{k} \Omega$ |
| Measured applied current | 3 mA | 1 mA | $100 \mu \mathrm{~A}$ | $10 \mu \mathrm{~A}$ | $1 \mu \mathrm{~A}$ | 100 nA | 10 nA |
| Measurement accuracy | $\pm 0.04 \% \pm 6 \mathrm{~d}$ | $\pm 0.02 \% \pm 5 \mathrm{~d}$ | $\pm 0.02 \% \pm 5 \mathrm{~d}$ | $\pm 0.02 \% \pm 5 \mathrm{~d}$ | $\pm 0.03 \% \pm 6 \mathrm{~d}$ | $\pm 0.2 \% \pm 10 \mathrm{~d}$ | $\pm 2.0 \% \pm 2 \mathrm{~d}$ |
| Open circuit voltage
 Maximum allowable
 applied voltage | 7.5 V or less | | | | | | |

* When the null function is used

DC current measurement

Range	200 mA	10 A
Maximum display	199999	109999
Resolution	$1 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
Measurement accuracy	$\pm 0.1 \% \pm 6 \mathrm{~d}$	$\pm 0.2 \% \pm 6 \mathrm{~d}$
Input terminal resistance	1.5Ω or less*	0.04Ω or less ${ }^{*}$
Cuercurrent protection	0.5 A 250 VIEC 127 sheet 1 Protected by aquick-blowing fuse	15 A 250 V with $10000-$ Ainterupting capacity Protected by a quick-blowing fuse

* The resistance of the protection fuse not included

AC current measurement (True RMS, AC, AC+DC)
With an input of 5% or more of the full scale

Range		200 mA	10 A
Maximum display	AC	199999	109999
	AC+DC	19999	10999
Resolution		$1 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$
$\begin{array}{\|c\|} \hline \text { Measure } \\ \text { ment } \\ \text { accuracy } \end{array}$	20 Hz to 1 kHz	$\pm 0.6 \% \pm 200 \mathrm{~d}$	
	1 kHzto 5 kHz	$\pm 5.0 \% \pm 200 \mathrm{~d}$	
Orest factor		3:1 at the full scale	
Input terminal resistance		1.5Ω or less*	0.04Ω or less*
Oercurrentprotection		0.5 A 250 VIEC 127 sheet 1	15 A 250 V with 10000 -Ainterupting capacity
		Protected by aquick-blowing fuse	Protected by a quick-blowing fuse
Response time		Approx. 1 second (0.1% or less of the final value in the same range)	

* The resistance of the protection fuse not included.

Temperature measurement (Rear panel)

Range	-50 to $1370^{\circ} \mathrm{C}$
Maximum display	13700
Resolution	$0.1^{\circ} \mathrm{C}$
Measurement accuracy	$\pm 0.15 \% \pm 2.0^{\circ} \mathrm{C}$
Corresponding thermocouple	$\mathrm{K}(\mathrm{CA})$

Frequency measurement

Range	20 Hz to 200 kHz
Maximum display	19999
Measurement accuracy	$\pm 0.02 \% \pm 2 \mathrm{~d}$

* Waveform: Sine wave and square wave

Duty ratio: 3 or less
Other specifications are the same as those for AC voltage/current measurement.

Measurement time

Sampling mode: Free-run

Function	Measurement time		
	FAST	MID	SLOW
DC voltage measurement	$12.5(80)$	$100(10)$	$400(2.5)$
ACvoltage measurement (ACcoupling)	$12.5(80)$	$100(10)$	$400(2.5)$
Resistance measurement	$12.5(80)$	$100(10)$	$400(2.5)$
DCcurrent measurement	$12.5(80)$	$100(10)$	$400(2.5)$
ACcurrent measurement (ACcoupling)	$12.5(80)$	$100(10)$	$400(2.5)$
ACcurrent measurement (AC+ DCcoupling)	$38(26.3)$	$220(4.5)$	$820(1.2)$
Diode measurement	$12.5(80)$	$100(10)$	$400(2.5)$
Continuity measurement	$12.5(80)$	$100(10)$	$400(2.5)$
Temperature measurement	$12.5(80)$	$100(10)$	$400(2.5)$
Frequency measurement	$210(4.7)$	$300(3.3)$	$600(1.6)$

Unit [ms] (times/second)

Common specifications (R 6451A/6452A)

Continuity measurement: Measurement range of 200Ω and continuity judgment value of 20Ω
Other specifications are the same as those for the 200Ω range for resistance measurement.
Diode measurement: M easurement range of 2000 mV Other specifications are the same as those for the 2000Ω range for resistance measurement.

Sampling rate	FAST	MID	SLOW
Number of measurements (times/second)	80	10	2.5

Calculation function: Null, smoothing, $\mathrm{dB} / \mathrm{dBm}$, scaling, MAX/MIN, comparator
General specifications
Measurement method: Integrating type
Input method: Floating type
Range switching: Auto and manual
Data display: 6-digit decimal, 7-segment electron ray indicator tube (Dual display for the R6452A)
Overinput indication: "OL" is displayed for inputs out of the rated measurement range.
Low-battery indication: If the battery power voltage drops to below the rated voltage, a low-battery mark is displayed in the display section.
Dielectric strength: Withstands 450 V continuously applied between the COM terminal and chassis and AC power line.

Operating environment:

Operating temperature: 0 to $50^{\circ} \mathrm{C}\left(0\right.$ to $40^{\circ} \mathrm{C}$ when the battery is mounted)
Operating humidity: 85\% RH or less
Storage temperature: -25 to $70^{\circ} \mathrm{C}\left(-20\right.$ to $50^{\circ} \mathrm{C}$ when the battery is mounted)
Power consumption: 15 VA or less
AC power: Specified at the time of ordering.

Option No.	Standard	32	42	44
Power voltage(V)	90 to 100	103 to 132	198 to 242	207 to 250

DC power supply: 6-hour continuous operation is possible by means of the R15807(optional) battery unit.
Dimensions: Approx. $212(\mathrm{~W}) \times 88(\mathrm{H}) \times 310$ (D) mm
Mass: 2.2 kg maximum (main unit), 3.5 kg maximum (with options)

Product name		A01402	A001034
Model		Power cable	Input cable $\times 1$
STANDARD ACCESSORIES: RS-232C, BAUD RATE OF 9600, 4800, 2400, 1200, 600 AND 300			
OPTIONAL ACCESSORIES			
A01034	INPUT CABLE		
A08316	ALLIGATOR CLIP ADAPTER		
A08317	MINIATURE CLIP ADAPTER		
TR1116	DC HIGH-VOLTAGE PROBE		
TR1101-130	SHEATHED TYPE THERMOCOUPLE		
TR1111	TERMINAL ADAPTER		
A02464	EIA RACK MOUNT KIT (TWIN)		
A02463	EIA RACK MOUNT KIT		
A02264	JIS RACK MOUNT KIT (TWIN)		
A02263	JIS RACK MOUNT KIT		
A01001	INPUT CABLE		
A01265	RS-232C CABLE (FOR 1 M, 250- AND 9-PIN (DMM))		
A09507	SRAM CARD (64 KBYTES)		
R16215	CARRYING BAG		
R15807	BATTERY UNIT		

TR1111
Terminal Adaptor

TR1111 Terminal Adaptor

The TR1111 can be used when measurements are performed by connecting leads to the R6441A/51A/52A.

R13223
Printer I/F \& Analog Output Unit

R13016 Digital Comparator Unit

R13221
Printer Interface Unit

R15807 Battery Unit

R13222
Memory Card Interface Unit

R13220 GPIB Interface Unit

Electrical specifications: Conforms to IEEE488-1978 and IEC625-1. Mechanical specifications: Conforms to IEEE488-1978.
Connector: 24-pin Amphenol
Interface specifications: SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT1, C0, and E2
Code system: ASCII code
Address designation: 31 talker/listener addresses can be set from the front panel of the main unit.

R13015 BCD Data Output Unit

Output data: BCD parallel code
Output data contents: Measured data, decimal point, polarity and unit (output only at first display unit)
Print command signal output: TTL-level positive logic (with a pulse width of approx. 1 ms)
External start signal:
A (Data output): TTL-level positive logic
(with a pulse width of $100 \mu \mathrm{~s}$ to 10 ms)
B (Remote control input): TTL-level negative logic
(with a pulse width of $100 \mu \mathrm{~s}$ to 10 ms), Input impedance of approx. $10 \mathrm{k} \Omega$
External control: Function, range, buzzer on/off, sampling mode, sampling rate, null cal culation and comparator calculation
Connector: Data output DHA-RC50 DDK
Remote input 57-40240 DDK

R13223 Printer I/F \& Analog Output Unit

Printer I/F section: Same as the R13221.

A nalog output section

Output voltage: 0 V to $+0.999 \mathrm{~V}(+1 \mathrm{~V}$ output at the time of IVFS calibration)
Number of conversion digits: 8 to 9 types of digits can be selected by means of the DIP switch on the accessory panel (rear panel of the main unit)
Conversion output: Can beselected from NORMAL, OFFSET NORMAL, ABSOLUTE, or OFFSET ABSOLUTE.
Conversion accuracy: $\pm 0.2 \%$ of the full scale $\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right), 85 \% \mathrm{RH}$ or less, for 1 year)
Output impedance: Approx. 180Ω
Output terminal: Binding post

R13016 Digital Comparator Unit

Comparison level: Upper and lower limits (HIGH LIMIT/LOW LIMIT
Determination condition:
HIGH Measured data $>$ HIGH LIMIT
PASS HIGH LIMIT \geq Measured data \geq LOW LIMIT
LOW Measured data <LOW LIMIT
Level setting: Set from the front panel of the main unit.
END signal: TTL-level, negative logic (with a pulse width of approx. 1 ms)
Contact output: Optical MOS relay HI, PASS, LO
Contact capacity: Allowable switching voltage of 50 V and allowable switching current of 0.1 A
Dielectric strength: 200 V (between input/output signal and chassis)
Transistor output: Open-collector output Maximum collector voltage/current of $50 \mathrm{~V} / 0.3 \mathrm{~A}$
Buzzer output: Generated when the comparison result is HIGH, PASS, LOW or HIGH/LOW.
Connector: 57-40140 DDK

R13221 Printer Interface Unit

Output code: Centronics
Output data contents: Measured data, decimal point, polarity and unit
Printing interval: Continuous, 5 seconds to 4 hours
Setting: Set from the main unit panel.
Connector: 57-40140 DDK
R15807 Battery Unit
Built-in battery : 12 V lead storage battery
Capacity : 1.8 Ah
Charging method : Fully charged for approx. 12 hours with the main unit power turned off and power supply connected.
Low-battery indication : Displayed on the front panel of the main unit. Goes on for a remai ning time of 2 hours. Does not affect main unit specifications.
Weight : 1 kg maximum

R13222 Memory Card Interface Unit

A vailable card : A 09507 (64 kbytes): SRAM card conforming to JEIDA ver. 4 (with attribute information)
Memory contents : M easured data and panel settings are stored with DOS format. (Up to 128 files and up to 4000 data items are stored.)

[^0]: * The resistance of the protection fuse not included.

