SPECIFICATIONS

OFrequency A

Range	1 Hz to 120 MHz (1/2-prescaler)	1 Hz to 60 MHz
Gate Time	$10 \mathrm{~ms}, 0.1 \mathrm{~s}, 1 \mathrm{~s}, 10 \mathrm{~s}$	CH B gate $(\mathrm{CH}$ B pulse width)
Display	$\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$	
Resolution	$\frac{ \pm 10 \mathrm{~ns} \pm \sqrt{2} \times \text { Trigger error* }}{\text { Gate time }} \times$ Frequency $[\mathrm{Hz}]$	
Accuracy	Resolution $\pm($ Timebase aging \times Frequency $[\mathrm{Hz}]$	

OFrequency B

Range	1 mHz to 60 MHz
Gate Time	$10 \mathrm{~ms}, 0.1 \mathrm{~s}, 1 \mathrm{~s}, 10 \mathrm{~s}$
Display	$\mathrm{mHz}, \mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$
Resolution	$\frac{ \pm 10 \mathrm{~ns} \pm \sqrt{2} \times \text { Trigger error* }}{\text { Gate time }} \times$ Frequency $[\mathrm{Hz}]$
Accuracy	Resolution $\pm($ Timebase aging \times Frequency $[\mathrm{Hz}]$

- Frequency C

Range	100 MHz to $2 \mathrm{GHz}(1 / 128$-prescaler)
Gate Time	$10 \mathrm{~ms}, 0.1 \mathrm{~s}, 1 \mathrm{~s}, 10 \mathrm{~s}$
Display	$\mathrm{MHz}, \mathrm{GHz}$
Resolution	$\frac{ \pm 10 \mathrm{~ns} \pm \sqrt{2} \times \text { Trigger error* }}{\text { Gate time }} \times$ Frequency $[\mathrm{Hz}]$
Accuracy	Resolution $\pm($ Timebase aging \times Frequency $[\mathrm{Hz}]$
-Period B	20 ns to 999.999999 s
Range	$1,10,100,1000$
Multiplier	$\mathrm{ns}, \mu \mathrm{s}, \mathrm{ms}, \mathrm{s}$
Display	$\pm 10 \mathrm{~ns} \pm \sqrt{2} \times$ Trigger error*
Resolution	$10^{\mathrm{N}} \quad$$10^{\mathrm{N}}$ denotes the scaling factor $(\mathrm{N}=0,1,2,3)$
Accuracy	Resolution $\pm($ Timebase aging \times Frequency $[\mathrm{s}]$

OFrequency Ratio A/B

Range	A, B: 1 mHz to 60 MHz (displays 0 in the case of $\mathrm{A}<\mathrm{B}$, if multiplier $=1$)
Multiplier	$1,10,100,1000$
Display	$\mu, \mathrm{m}, \mathrm{k}, \mathrm{M}$
Resolution	\pm A-input count $\pm \sqrt{2} \times$ B-input trigger error*
	10^{N}
Accuracy	Resolution

-Time Interval $\mathrm{A} \rightarrow \mathrm{B}$

Range	60 ns to $999.999999 \mathrm{~s} ; \mathrm{A}, \mathrm{B}: 1 \mathrm{mHz}$ to 50 MHz
Multiplier	$1,10,100,1000$
Display	$\mathrm{ns}, \mu \mathrm{s}, \mathrm{ms}, \mathrm{s}$
Dead Time	200 ns (Multiplier $=10,100,1000$)
Resolution	$\frac{ \pm 10 \mathrm{~ns} \pm \text { A-input trigger error* } \pm \text { B-input trigger error* }}{}\left[\begin{array}{l}\sqrt{10^{\mathrm{N}}}\end{array}\right.$
Accuracy	Resolution \pm (Timebase aging \times Time) \pm Trigger level timing error** $\pm 10 \mathrm{~ns}$ interchannel error***

OPulse Width B

Range	20 ns to 999.999999 s
Multiplier	$1,10,100,1000$
Display	$\mathrm{ns}, \mu \mathrm{s}, \mathrm{ms}, \mathrm{s}$
Resolution	$\frac{ \pm 10 \mathrm{~ns} \pm \text { Rising-edge trigger error*} \pm \text { Falling-edge trigger error* }}{\sqrt{10^{\mathrm{N}}}}[\mathrm{s}]$
Accuracy	Resolution \pm (Timebase aging \times Time) \pm Trigger level timing error**

ODuty Factor B

Range	0.00000001 to 0.99999999
Multiplier	$1,10,100,1000$
Display	Indicates ratios in numerals (50\% reads as 0.5)
Resolution	$\left(\pm \frac{\text { Pulse width }+ \text { IPulse-width resolution }}{\text { Period }- \text { I Resolution of period I }}-\right.$ Duty factor $)$
Accuracy	$\left(\pm \frac{\text { Pulse width }+ \text { IPulse-width accuracy } \mid}{\text { Period }-\mid \text { Accuracy of period I }}-\right.$ Duty factor $)$

- Totalization A

Input Frequency Range	1 mHz to 50 MHz
Count Capacity	0 to 999999999
Count Error	± 1 count through measurement by Channel B gating
Counting Control	Manual start, or Channel B gating (pulse width)

- Revolution B (TC110 only)

Range	60 mrpm to 120 Mrpm
Gate Time	$10 \mathrm{~ms}, 0.1 \mathrm{~s}, 1 \mathrm{~s}, 10 \mathrm{~s}$
Display	$\frac{\text { mrpm, rpm, krpm, Mrpm }}{}$Resolution Accuracy Resolution \pm (Timebase aging $\times \sqrt{2} \times$ Trigger error ${ }^{*}$

- Peak Voltage A, B

Voltage Range	$\pm 5 \mathrm{~V}(\mathrm{ATT}=\mathrm{x} 1)$
Frequency Range	50 Hz to 20 MHz
Resolution	$20 \mathrm{mV}(\mathrm{ATT}=\mathrm{x} 1)$
Measurement Error	Typically, $\pm 10 \% \pm 40 \mathrm{mV}(\mathrm{ATT}=\mathrm{x} 1)$ of reading for sine wave
Dynamic Range	$250 \mathrm{mVp}-\mathrm{p}$ to $5 \mathrm{Vp}-\mathrm{p}$

*Trigger error $=\frac{\sqrt{X^{2}+E n^{2}}}{S . R}[s]$
$X=$ Noise at counter input ($=600 \mu \mathrm{~V} \mathrm{rms}$),
En = Input signal noise,
$S . R=$ Slew rate $(\mathrm{V} / \mathrm{s})$ of input signal at trigger level.
$\underset{\text { timing error }}{* * \text { Trigger level }}=\left(\frac{20 \mathrm{mV}}{\mathrm{S} . \mathrm{R}(\text { start })}-\frac{20 \mathrm{mV}}{\mathrm{S} . \mathrm{R}(\text { stop })}\right) \pm \frac{\text { setting accuracy }}{\text { S. R(start) }} \pm \frac{\text { setting accuracy }}{\mathrm{S} . \mathrm{R}(\text { stop })}$
*** 10 ns interchannel error (error due to the difference in the internal delays on Channels A and B)

Common Specifications

<Input Section>

- Channels A and B input

Input Impedance	$1 \mathrm{M} \Omega / / 45 \mathrm{pF}$ (separate input mode) $500 \mathrm{k} \Omega / / 80 \mathrm{pF}$ (Common A and B input mode)
Coupling	DC, AC, AC coupling: 35 Hz cutoff frequency
Attenuator	$\times 1, \times 10, \times 100$
Trigger Level	-5 V to $+5 \mathrm{~V} \quad$ (ATT $=$ $\times 1$ -50 V to $+50 \mathrm{~V} \quad$ (ATT $=$ $\times 10$ -250 V to +250 mV resolution) Setting accuracy: $\pm 6 \%$ of setpoint $\pm 300 \mathrm{mV}$ resolution) 2 mV resolution) Slope: Selection of + or - slope Display: 7 -segment LED $=\times 1$) with SETTING or DISPLAY key
AUTO Trigger	Automatic setting at half of the input amplitude Operating frequency range: Sine wave of 50 Hz to 120 MHz Sensitivity: 250 mV rms Setting accuracy: $\pm 100 \mathrm{mV}$ (at 0 V cross signal)
Operating Voltage Range	$\pm 5 \mathrm{~V}$ (at ATT $=\times 1$)
Input Sensitivity	$50 \mathrm{mVrms}:$ $\mathrm{DC}<$ Input frequency $\leq 60 \mathrm{MHz}$ $100 \mathrm{mVrms}:$ 60 MHz < Input frequency $\leq 120 \mathrm{MHz}$
Maximum Input Voltage	$\begin{aligned} & 250 \mathrm{~V}(\mathrm{DC}+\text { ACpeak }): \mathrm{DC} \leq \text { Input frequency }<5 \mathrm{MHz} \\ & \left.\frac{1.2 \times 10^{3}}{\mathrm{f}[\mathrm{MHz}]} \mathrm{V} \text { (DC + AC peak }\right): 5 \mathrm{MHz} \leq \text { input frequency }<120 \mathrm{MHz} \end{aligned}$
Filtering of Superimposed Noise	$100 \mathrm{kHz}(-3 \mathrm{~dB})$ first-order lowpass filter
Holdoff	
COM A	Switching of separate/common input modes for channels A and B
CH B Gate input	Gate signal when counting frequency A and Totalize
Minimum Input Pulse Width	10 ns (except for the measurement function FREQ-A)
- Channel C input	
Input Impedance	50Ω
Coupling	AC
Attenuator	$\times 1$
Operating Voltage Range	+13 dBm
Maximum Input Voltage	+30 dBm
Input Sensitivity	$-20 \mathrm{dBm}: 100 \mathrm{MHz} \leq$ Input frequency $<1 \mathrm{GHz}$ $-10 \mathrm{dBm}: 1 \mathrm{GHz} \leq$ Input frequency $\leq 2 \mathrm{GHz}$

<Timebase>

Internal Reference Frequency	10 MHz
Frequency Stability	Aging rate: $\pm 1.5 \times 10^{-6} /$ year Temperature characteristics: $\pm 3 \times 10^{-6}\left(5\right.$ to $\left.40^{\circ} \mathrm{C}\right)$
Reference Output	Frequency: 10 MHz (typ.) Output level: $1 \mathrm{Vp}-\mathrm{p}(50 \Omega$) (square wave)
External Reference Input	Frequency: $10 \mathrm{MHz} \pm 10 \mathrm{~Hz}$ Input level: doty $7 \mathrm{Vp}-\mathrm{p}$ duty factor ranging from 40 to 60% for pulsed signals Coupling: AC Input impedance: $1 \mathrm{k} \Omega$ or greater

- High Stability Timebase (Optional)

Crystal Oscillator	Digital, temperature-compensated crystal oscillator
Frequency	10 MHz
Frequency Stability	Aging rate: $\pm 1 \times 10^{-7} /$ year Temperature characteristics: $\pm 1 \times 10^{-7}\left(5\right.$ to $\left.40^{\circ} \mathrm{C}\right)$ Short-term stability: $\pm 5 \times 10^{-10} \mathrm{rms} / \mathrm{s}$

<General Specifications>

Display	7-segment red LEDs for 9 digits decimal
Sampling Rate	4 ms or greater, or hold Peak voltage measurement: 20 ms
Memory Function	Stores/recalls eight panel setups with the STORE/RECALL key (non-volatile memory).
Scaling Function	The following algebraic formula is applicable to any measurement function except the peak voltage measurement. $\mathbf{a X}+\mathbf{b}$, where \mathbf{X} is the measured value, \mathbf{a} is the scale factor (scale value), and \mathbf{b} is the offset. Two different formulas can be set for each measured value.
Communications Function	GP-IB interface (equipped as standard) Conforming standards: IEEE STD 488-1978 (JIS C1901-1987) Transfer rate: Approx. 5 ms (200 data/s) Subsets: SH1, AH1, T5, L4, SR1, RL1, PP0, DC1, DT1, C0 Size of internal memory: 1024 words max. Sample rate to memory: 1 ms or from 10 ms to 300 s , settable in 10 ms steps
Operating Temperature Range	5 to $40^{\circ} \mathrm{C}\left(41\right.$ to $\left.104^{\circ} \mathrm{F}\right)$
Operating Humidity Range	35 to 85% RH, where the maximum wet-bulb temperature is $29^{\circ} \mathrm{C}$
Storage Temperature Range	$\begin{aligned} & -20 \text { to } 60^{\circ} \mathrm{C} \\ & \left(-4 \text { to } 140^{\circ} \mathrm{F}\right) \\ & \hline \end{aligned}$
Power Consumption	60 VA max.
Supply Voltage Range	90 to 110 V AC or 108 to 132 V AC or 207 to 253 V AC
Rated Power Supply Frequency	$\begin{array}{\|l} \hline 50 / 60 \mathrm{~Hz} \\ \text { (operating frequency range: } 48 \text { to } 63 \mathrm{~Hz} \text {) } \\ \hline \end{array}$
Dimensions	Approximately $213 \mathrm{~mm} \times 100 \mathrm{~mm} \times 330 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$
Weight	Approximately 3.6 kg (counter unit alone)
Recommended opera	ing conditions: Temperature: $23 \pm 2^{\circ} \mathrm{C}$ Humidity: $50 \pm 10 \% \mathrm{RH}$ Power supply voltage: $100 \mathrm{~V} \pm 1 \%$

Note: Allow the TC110 and TC120 to warm up for more than 30 minutes to obtain the performance specified above.

AVAILABLE MODELS

Model	Suffix code	Description
704111		TC110: $120-\mathrm{MHz}$ model having no Channel C input
704112		TC120: 2-GHz model equipped with Channel C input
Power Requirements	-1	90 to 110 V AC
	-4	108 to 132 V AC
	-7	207 to 253 V AC
Power Cord	-D	UL, CSA standard
	-F	VDE standard
	-R	SAA standard
	-J	BS standard
Optional Features	/T1	High stability timebase
	/D1	D/A output
	/H1	Handler interface (isolated model)
	/H2	Handler interface (non-isolated model)

Optional Accessories

Name	Code	Description	Unit of sale
50Ω terminator	$\mathbf{7 0 0 9 7 6}$	Through-type	1
Conversion adapter	$\mathbf{3 6 6 9 2 1}$	BNC banana terminal	1
BNC cable	$\mathbf{3 6 6 9 2 4}$	BNC alligator clip (1 m)	1
BNC cable	$\mathbf{3 6 6 9 2 5}$	BNC alligator clip (2 m)	1
BNC cable	$\mathbf{3 6 6 9 2 6}$	With alligator clips	1
Rack mounting kit	$\mathbf{7 5 1 5 0 1}$	EIA single mounting (for one counter)	1
Rack mounting kit	$\mathbf{7 5 1 5 0 2}$	EIA double mounting (for two counters)	1
Rack mounting kit	$\mathbf{7 5 1 5 0 3}$	JIS single mounting (for one counter)	1
Rack mounting kit	$\mathbf{7 5 1 5 0 4}$	JIS double mounting (for two counters)	1

DIMENSIONS

